The Increasing Prevalence of Gastroschisis: Associated Factors, Possible Mechanisms, and Potential Mitigative Interventions

Claude Hughes1 and Obinna O. Adibe2

1Therapeutic Science and Strategy Unit, IQVIA; Department of Obstetrics and Gynecology, Duke University Medical Center; Epidemiology and Environmental Epigenetics Laboratory, North Carolina State University, Durham, NC, USA

2Departments of Surgery and Pediatrics, Duke University Medical Center, Durham, NC, USA

Received October 23, 2018; Accepted January 28, 2019


Background: Gastroschisis has increased globally over recent decades and this increase is not explained by demographic changes in maternal age. Implicated risk factors for this increase include lifestyle behaviors, environmental exposures, lower socioeconomic status, lower body mass index, poor nutrition, smoking tobacco, using illicit drugs, alcohol, or analgesics and genitourinary infections.

Methods: Selective review of the literature.

Results: Present hypotheses would only suggest avoidance of suspect exposures as protective interventions. To identify safe and efficacious protective therapies, new cellular/molecular modes-of-action need to be considered. Plausible developmental modes-of-action include a) changes in epigenetic programming of relevant stem or progenitor cells; b) mechanical forces (cellular mechanosensitivity and mechanotransduction) signaling; and c) ephrin–Eph receptor multimodal signaling. These developmental modes-of-action present plausible options for “druggable” molecules that could be developed into protective or mitigative therapeutic agents for gastroschisis.

Conclusion: Possible interventions for modifiable factors in gastroschisis include 1) Delay childbearing. 2) Improve nutrition for younger gravidas. 3) Pre-conceptional counseling to reduce embryonic exposures to the range of implicated lifestyle, environmental and medical factors. 4) Urge research colleagues to investigate the cellular and molecular mechanisms underlying gastroschisis and to translate those insights into one or more safe and efficacious preventive or mitigative therapies.


Druggable molecules; ephrin–Eph receptor; exposures; gastroschisis; mechanosensitivity and mechanotransduction; protective therapeutics; risk factors; translational toxicology

Copyright © 2019 by Global Clinical and Translational Research

How to cite this article:

Hughes C and Adibe O. The increasing prevalence of gastroschisis: associated factors, possible mechanisms, and potential mitigative interventions.  Glob Clin Transl Res. 2019; 1(1):4-20. DOI:10.36316/gcatr.01.0002.


1.       Parker SE et al. for the National Birth Defects Prevention Network. Updated national birth prevalence estimates for selected birth defects in the United States, 20042006. Birth Defects Res A Clin Mol Teratol. 2010; 88(12):1008-16.

2.       Bugge M, Holm NV. Abdominal wall defects in Denmark, 1970-89. Paediatr Perinat Epidemiol. 2002:16 (1):73-81.

3.       Jones AM et al. Increasing prevalence of gastroschisis 14 States, 1995–2012. MMWR. January 22, 2016: 65(2):23-6.

4.       Collins SR et al. The rising prevalence of gastroschisis and omphalocele in Tennessee. J Pediatr Surg. 2007; 42:1221–4.

5.       Bugge M et al. Abdominal wall defects in Greenland 1989-2015. Birth Defects Res. 2017; 109(11):836-42. Doi: 10.1002/bdr2. 1025.

6.       Lane C et al. A population-based study of prevalence trends and geospatial analysis of hypospadias and cryptorchidism compared with non-endocrine mediated congenital anomalies. J Pediatr Urol. 2017; 13(3): 284.e1-7.

7.       Mastroiacovo P et al. Gastroschisis and associated defects: an international study. Am J Med Genet Part A. 2007; 143A:660–71.

8.       Keys C et al. Gastroschisis: the cost of an epidemic. J Pediatr Surg. 2008; 43:654–7.

9.       de Buys Roessingh AS et al. Predictive factors at birth of the severity of gastroschisis. World J Gastrointest Pathophysiol 2015; 6(4):228-34. doi: v6.i4.228.

10.    Kassa A-M, Lilja HE. Predictors of postnatal outcome in neonates with gastroschisis. J Pediatr Surg. 2011; 46:2108–14.

11.    Lund CH et al. Gastroschisis: incidence, complications, and clinical management in the neonatal intensive care unit. J Perinat Neonatal Nurs. 2007; 21 (1): 63-8.

12.    Bergholz R et al. Complex gastroschisis is a different entity to simple gastroschisis affecting morbidity and mortality—A systematic review and meta-analysis. J Pediatr Surg. 2014; 49:1527–32.

13.    Youssef F et al. Flap versus fascial closure for gastroschisis: a systematic review and meta-analysis. J Pediatr Surg. 2016; 51(5):718-25. Doi: 10.1016/j.j-pedsurg.2016.02.010.

14.    Opitz JM Invited Comment: Gastroschisis. Am J Med Genet Part A. 2007; 143A:635–8.

15.    Drongowski RA et al. Contribution of demographic and environmental factors to the etiology of gastroschisis: a hypothesis. Fetal Diagn Ther. 1991; 6(1-2):14-27.

16.    Payne NR et al. Growth restriction in gastroschisis: quantification of its severity and exploration of a placental cause. BMC Pediatrics 2011, 11:90 http: //www. 90.

17.    Mac Bird T et al. Demographic and environmental risk factors for gastroschisis and omphalocele in the National Birth Defects Prevention Study. J Pediatr Surg. 2009; 44(8):1546-51.

18.    Duong HT et al. Maternal use of hot tub and major structural birth defects. Birth Defects Res A Clin Mol Teratol. 2011; 91(9): 836-41. doi:10.1002/bdra. 208-31.

19.    Agopian AJ et al. A case-control study of maternal bathing habits and risk for birth defects in offspring. Environ Health. 2013; 12: 88. doi:10.1186/1476-069X-12-88.

20.    Lin S et al. Maternal occupation and the risk of major birth defects: a follow-up analysis from the National Birth Defects Prevention Study. Int J Hyg Environ Health. 2013; 216(3):317-23.

21.    Ortega-García JA et al. Violence against women and gastroschisis: a case-control study. Int J Environ Res Public Health. 2013; 10(10): 5178-90. doi:10.3390/ ijerph 10105178.

22.    Skarsgard ED et al. Maternal risk factors for gastroschisis in Canada. Birth Defects Res A Clin Mol Teratol. 2015; 103(2):111-8. doi:10.1002/ bdra. 23349.

23.    Bugge M et al. Monozygotic twins discordant for gastroschisis: case report and review of the literature of twins and familial occurrence of gastroschisis. Am J Med Genet. 1994; 52(2): 223-6.

24.    Hillebrandt S et al. Genetic analysis of the cause of gastroschisis in the HLG mouse strain. Mutat Res. 1996 Nov 11; 372(1):43-51.

25.    Streffer C. Transgenerational transmission of radiation damage: genomic instability and congenital malformation. J Radiat Res. 2006; 47 Suppl B: B19-24.

26.    Feldkamp ML et al. AEBP1 gene variants in infants with gastroschisis. Birth Defects Res A Clin Mol Teratol. 2012; 94(9):738-42. doi:10. 1002/bdra. 23041.

27.    Padula AM et al. Gene variants as risk factors for gastroschisis. Am J Med Genet A. 2016; 170 (11): 2788-2802. doi: 10.1002/ajmg.a. 37883.

28.    Makhmudi A et al. Effects of MTHFR c.677C>T, F2 c.20210G>A and F5 Leiden polymorphisms in gastroschisis. J Invest Surg. 2016; 29(2):88-92. doi: 10. 3109 /08941939. 2015.1077908.

29.    Rittler M et al. Gastroschisis is a defect of the umbilical ring: evidence from morphological evaluation of stillborn fetuses. Birth Defects Research (Part A). 2013; 97:198–209.

30.    Bargy F, Beaudion S. Comprehensive developmental mechanisms in gastroschisis. Fetal Diagn Ther 2014; 36:223–230. DOI: 10.1159 /000360080

31.    Goldbaum G et al. Risk factors for gastroschisis. Teratology. 1990 Oct; 42(4):397-403.

32.    Chabra S, Hall BD. A cluster study of gastroschisis: single center experience. J Ky Med Assoc. 2008 Aug; 106(8):361-5.

33.    Rasmussen SA, Frías JL. Non-genetic risk factors for gastroschisis. Am J Med Genet C Semin Med Genet. 2008; 148C (3):199-212. doi:10. 1002/ajmg.c.30175.

34.    Lammer EJ et al. Gastroschisis: a gene-environment model involving the VEGF-NOS3 pathway. Am J Med Genet C Semin Med Genet. 2008; 148C (3): 213-8.doi: 10.1002/ajmg. c. 30182.

35.    Werler MM et al. Demographic, reproductive, medical, and environmental factors in relation to gastroschisis. Teratology. 1992; 45 (4):353-60.

36.    Torfs CP et al. Maternal medications and environmental exposures as risk factors for gastroschisis. Teratology. 1996; 54(2):84-92.

37.    Hume RF et al. Vascular disruption birth defects and history of prenatal cocaine exposure: a case control study. Fetal Diagn Ther. 1997; 12(5):292-5.

38.    Morrison JJ et al. Recreational drugs and fetal gastroschisis: maternal hair analysis in the periconceptional period and during pregnancy. BJOG. 2005; 112 (8):1022-5.

39.    David AL et al. A case-control study of maternal peri-conceptional and pregnancy recreational drug use and fetal malformation using hair analysis. PLoS One. 2014 Oct 31; 9(10): e111038.

40.    Short T et al. Gastroschisis trends and ecologic link to opioid prescription rates—United States, 2006–2015. MMWR. 2019; 68:31-36.

41.    Burdan F et al. Celosomy is associated with prenatal exposure to cyclooxygenase inhibitors. Pharmacol Res. 2006; 53(3):287-92.

42.    Elliott L et al. Case-control study of a gastroschisis cluster in Nevada. Arch Pediatr Adolesc Med. 2009; 163 (11):1000-6. doi: 10.1001/archpediatrics. 2009. 186.

43.    Richardson S et al. Associations between periconceptional alcohol consumption and craniosynostosis, omphalocele, and gastroschisis. Birth Defects Res A Clin Mol Teratol. 2011; 91(7): 623-30.

44.    Hackshaw A et al. Maternal smoking in pregnancy and birth defects: a systematic review based on 173 687 malformed cases and 11.7 million controls. Hum Reprod Update.2011; 17(5): 589-604.

45.    Jenkins MM et al. Maternal smoking, xenobiotic metabolizing enzyme gene variants, and gastroschisis risk. Am J Med Genet A. 2014; 164A (6):1454-63. doi: 10.1002/ajmg.a. 36478.

46.    van Gelder MM et al. Using Bayesian models to assess the effects of under-reporting of cannabis use on the association with birth defects, national birth defects prevention study, 1997-2005. Paediatr Perinat Epid-emiol. 2014; 28 (5):424-33.

47.    Polen KN et al. Association between reported venlafaxine use in early pregnancy and birth defects, national birth defects prevention study, 1997-2007. Birth Defects Res A Clin Mol Teratol. 2013; 97(1):28-35.

48.    Ahrens KA et al. Antiherpetic medication use and the risk of gastroschisis: findings from the National Birth Defects Prevention Study, 1997-2007. Paediatr Perinatal Epidemiol. 2013; 27 (4):340-5.

49.    Given JE et al. EUROmediCAT signal detection: an evaluation of selected congenital anomaly-medication associations. Br J Clin Pharmacol. 2016; 82(4): 1094-109. doi: 10.1111/bcp. 12947.

50.    Given JE et al. Gastroschisis in Europe - A case-malformed-control study of medication and maternal illness during pregnancy as risk factors. Paediatr Perinat Epidemiol. 2017; 31 (6):549-559.

51.    Feldkamp ML et al. Chlamydia trachomatis is responsible for lipid vacuolation in the amniotic epithelium of fetal gastroschisis. Birth Defects Res. 2017; 109 (13):1003-1010.

52.    Singh J. Gastroschisis is caused by the combination of carbon monoxide and protein zinc deficiencies in mice. Birth Defects Res B Dev Reprod Toxicol. 2003; 68 (4):355-62.

53.    Torfs CP et al. Selected gene polymorphisms and their interaction with maternal smoking, as risk factors for gastroschisis. Birth Defects Res A Clin Mol Teratol. 2006 Oct; 76(10):723-30.

54.    Waller DK et al. Prepregnancy obesity as a risk factor for structural birth defects. Arch Pediatr Adolesc Med. 2007; 161(8):745-750.

55.    Siega-Riz AM et al. The joint effects of maternal pre-pregnancy body mass index and age on the risk of gastroschisis. Paediatric and Perinatal Epidemiology 2009; 23: 51–57.

56.    Paranjothy S et al. The role of maternal nutrition in the etiology of gastroschisis: an incident case-control study. Inter J Epidemiol 2012; 41:1141–1152 doi: 10.1093/ije /dys092.

57.    Dolk H et al. Risk of congenital anomalies near hazardous-waste landfill sites in Europe: the EUROHAZCON study. Lancet. 1998 Aug 8; 352(9126): 423-7.

58.    Fielder HM et al. Assessment of impact on the health of residents living near the Nanty-Gwyddon landfill site: a retrospective analysis. BMJ. 2000 Jan 1; 320 (7226):19-22.

59.    Elliott P et al. Risk of adverse birth outcomes in populations living near landfill sites. BMJ. 2001 Aug 18; 323(7309):363-8.

60.    Root ED, Emch ME. Tracing drinking water to its source: An ecological study of the relationship between textile mills and gastroschisis in North Carolina. Health Place. 2010; 16(5):794-802.

61.    Lupo PJ et al. Maternal occupational exposure to polycyclic aromatic hydrocarbons: effects on gastroschisis among offspring in the National Birth Defects Prevention Study. Environ Health Perspect.2012; 120(6):910-5.doi: 10.1289 /ehp.1104305.

62.    Wangikar PB et al. Effect in rats of simultaneous pre-natal exposure to ochratoxin A and aflatoxin B1. I. maternal toxicity and fetal malformations. Birth Defects Res B Dev Reprod Toxicol. 2004; 71(6):343-51.

63.    Van Dorp DR et al. Teratogens inducing congenital abdominal wall defects in animal models. Pediatr Surg Int. 2010; 26(2):127-39. doi: 10.1007/s00383-009 -2482-z.

64.    Waller SA et al. Agricultural-related chemical exposures, the season of conception, and risk of gastroschisis in Washington State. Am J Obstet Gynecol 2010; 202:41. e1-6.

65.    Agopian AJ et al. Maternal residential atrazine exposure and gastroschisis by maternal age. Matern Child Health J. 2013; 17(10): 1768-75.doi:10.1007/s10995- 012-1196-3.

66.    Joshi N et al. Developmental abnormalities in chicken embryos exposed to N-nitrosoatrazine. J Toxicol Environ Health A. 2013; 76 (17): 1015-22.doi:10.1080/15287394. 2013. 831721.

67.    Kielb C et al. Maternal periconceptional occupational exposure to pesticides and selected musculoskeletal birth defects. Int J Hyg Environ Health. 2014; 217(2-3): 248-54.doi: 10.1016/j.ijheh. 2013. 06. 003.

68.    Shaw GM et al. Early pregnancy agricultural pesticide exposures and risk of gastroschisis among offspring in the San Joaquin Valley of California. Birth Defects Res A Clin Mol Teratol. 2014; 100(9): 686-94.

69.    Feldkamp M et al. Development of Gastroschisis: Review of Hypotheses, a novel hypothesis, and implications for Research. Am J Med Genet Part A. 2007; 143 A: 639–652.

70.    Chambers C et al. Novel risk factor in gastroschisis: change of paternity. Am J Med Genet Part A. 2007; 143:53–659.

71.    Bateman ME et al. The effects of endocrine disruptors on adipogenesis and osteogenesis in mesenchymal stem cells: a review. Front. Endocrinol. 2016; 7: 171. doi: 10.3389/fendo. 2016.00171.

72.    Ladoux B, Mège R. Mechanobiology of collective cell behaviors. Nat Rev Mol Cell Biol 2017; 18:743-757.

73.    Tatapudy S et al. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO re-ports. 2017; 18 (12): 2105-2117.

74.    Uhler C, Shivashankar G. Regulation of genome organization and gene expression by nuclear mechano-transduction. Nat Rev Mol Cell Biol. 2017; 18: 717-727. doi: 10.1038/nrm.2017 .101.

75.    Vining K, Mooney D. Mechanical forces direct stem cell behavior in development and regeneration. Nat Rev Mol Cell Biol. 2017; 18:728-742.

76.    Mongera A et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongateion. Nature. 2018; /s41586-018-0479-2 (2018).

77.    Lenne P-F, Trivedi V. Melting sculpts the embryo’s body. Nature.2018; d41586 -018-06108-7163.

78.    Sawyer JK et al. A contractile actomyosin network linked to adherens junctions by Canoe/afadin helps drive convergent extension. Mol. Biol. Cell 22, 2491–2508 (2011).

79.    Sawyer JK et al. The Drosophila afadin homologue Canoe regulates linkage of the actin cytoskeleton to adherens junctions during apical constriction. J. Cell Biol. 186, 57–73 (2009).

80.    Mandai K. et al. Afadin: a novel actin filament-binding protein with one PDZ domain localized at cadherin-based celltocell adherens junction. J. Cell Biol. 139, 517528 (1997).

81.    Ikeda W et al. Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J. Cell Biol. 146, 1117–1132 (1999).

82.    Zhadanov AB et al. Absence of the tight junctional protein AF6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr. Biol. 9, 880–888 (1999).

83.    Choi W. et al. Remodeling the zonula adherens in response to tension and the role of afadin in this response. J. Cell Biol. 213, 243–260 (2016).

84.    Kania A, Klein R. Mechanisms of ephrin–Eph signaling in development, physiology and disease Nat Rev Mol Cell Biol. 2016; 17:240-256.

85.    Noberini R et al. Small molecules can selectively inhibit Ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem. 2008; 283(43): 29461–29472.

86.    Qin H et al. Crystal structure and NMR binding reveal that two small molecule antagonists target the high affinity Ephrin-binding channel of the EphA4 receptor. J Biol Chem. 2008; 283 (43); 29473–29484.

87.    Parisi F et al. Early first trimester maternal ‘high fish and olive oil and low meat’ dietary pattern is associated with accelerated human embryonic development. Eur J Clin Nutr. 2018; 72:1955-62.

88.    Khan A et al. Gastroschisis imaging. Medscape. 2016; 1-9. /403800-print.

89.    The Human Protein Atlas; The druggable proteome.

90.    Giorgio C et al.  Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One 2011; 6(3): e18128. doi:10. 1371/journal.pone.0018128.

91.     Wadhwa EL et al. Gastroschisis and maternal intake of phytoestrogens. Am J Med Genet A. 2016; 170(8): 2078-82.doi:10.1002/ajmg.a. 37659.