Altered Gut Microbiome in Autism Spectrum Disorder:
Potential Mechanism and Implications for Clinical Intervention
Kuokuo Li1, Zhengmao Hu1, Jianjun
Ou2, Kun Xia1
1Center for Medical Genetics and School of Life Sciences, Central South
University, Changsha, Hunan, China
2Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha,
Hunan, China
Received July 18, 2018; Accepted
January 2, 2019
ABSTRACT
Autism
spectrum disorder is a heterogeneous neurodevelopmental disorder with an
increased prevalence around the world over the past two decades. Remarkably, a
large number of individuals with ASD have gastrointestinal disorders. Recent
studies demonstrate that the endogenous gut microbiota has a close relationship
with ASD according to the analyses of human host intestinal microbial
composition and animal model studies. Here, we review the reports of microbial
dysbiosis in ASD, and then discuss the recent evidence of biological
interactions among microbiota, metabolism, immunity, neurodevelopment, and
behaviors. We also describe the role of the gut microbiome in the link between
ASD and environmental risk factors. Finally, we suggest adjuvant treatments to
consider in attempts to correct autistic behaviors.
KEYWORDS
Gut microbiome; autism spectrum disorder; clinical interventions
Copyright © 2019 by Global Clinical and Translational Research
How
to cite this article:
Li K, Hu Z, Ou J, Xia K. Altered gut microbiome in Autism Spectrum Disorder: potential
mechanism and implications for clinical intervention. Glob Clin Transl
Res. 2019;
1(1):45-52. DOI:10.36316/gcatr.01.0006.
References
1. Autism and
Developmental Disabilities Monitoring Network Surveillance Year 2008 Principal
Investigators; Centers for Disease Control and Prevention. Prevalence of autism spectrum
disorders--Autism and Developmental Disabilities Monitoring Network, 14 sites,
United States, 2008. MMWR Surveill Summ. 2012; 61(3):1-19.
2. Blumberg SJ, Bramlett
MD, Kogan MD, Schieve LA, Jones JR, Lu MC. Changes in prevalence of
parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to
2011-2012. Natl Health Stat Report. 2013(65):1-11.
3. Kim YS, Leventhal BL,
Koh YJ, Fombonne E, Laska E, Lim EC, et al. Prevalence of autism
spectrum disorders in a total population sample. Am J Psychiatry. 2011;
168(9):904-12.
4. Lavelle TA, Weinstein
MC, Newhouse JP, Munir K, Kuhlthau KA, Prosser LA. Economic burden of childhood autism
spectrum disorders. Pediatrics. 2014; 133(3): e520-9.
5. Baxter AJ, Brugha TS, Erskine HE, Scheurer
RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum
disorders. Psychol Med. 2015; 45 (3):601-13.
6. Bercum FM, Rodgers KM, Benison AM, Smith ZZ, Taylor J, Kornreich E, et al. Maternal stress combined with
terbutaline leads to comorbid autistic-like behavior and epilepsy in a rat
model. J Neurosci. 2015; 35(48):15894-902.
7. Krakowiak P, Goodlin-Jones B, Hertz-Picciotto
I, Croen LA, Hansen RL. Sleep problems in children
with autism spectrum disorders, developmental delays, and typical development:
a population-based study. J Sleep Res. 2008; 17(2): 197-206.
9. Sandin S, Lichtenstein P, Kuja-Halkola
R, Larsson H, Hultman CM, Reichenberg A. The familial
risk of autism. JAMA. 2014; 311(17):1770-7.
10. Colvert
E, Tick B, McEwen F, Stewart C, Curran SR, Woodhouse E, et al. Heritability of
autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry.
2015; 72(5):415-23.
11. Ou
J, Liu R, Shen Y, Xia K, Zhao J. An overview on genetic and environmental risk
of autism spectrum disorder. Glob Clin Transl Res
2019; 1(1):11-21
12. Chaidez
V, Hansen RL, Hertz-Picciotto I. Gastrointestinal
problems in children with autism, developmental delays or typical development.
J Autism Dev Disord. 2014; 44(5): 1117-27.
13. Jyonouchi H, Geng L, Ruby A, Reddy
C, Zimmerman-Bier B. Evaluation of an association between gastrointestinal
symptoms and cytokine production against common dietary proteins in children
with autism spectrum disorders. J Pediatr. 2005;
146(5): 605 -10.
14. McElhanon BO, McCracken C, Karpen
S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a
meta-analysis. Pediatrics. 2014; 133(5): 872-83.
15. Benach
JL, Li E, McGovern MM. A microbial association with autism. MBio.
2012; 3(1): e00019-12.
16. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and
gastrointestinal status in children with autism¡ªcomparisons to typical children
and correlation with autism severity. BMC Gastroenterol. 2011; 11: 22.
18. Tremaroli V, Backhed F. Functional
interactions between the gut microbiota and host metabolism. Nature. 2012;
489(7415):242-9.
19. Braniste
V, Al-Asmakh M, Kowal C, Anuar
F, Abbaspour A, Toth M, et al. The gut microbiota
influences blood-brain barrier permeability in mice. Sci Transl
Med. 2014; 6(263): 263ra158.
20. Strati F, Cavalieri D, Albanese D,
De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut
microbiota in autism spectrum disorders.
Microbiome. 2017; 5(1):24.
21. Williams BL, Hornig M, Parekh T,
Lipkin WI. Application of novel PCR-based methods for detection, quantitation,
and phylogenetic characterization of Sutterella species in inte-stinal
biopsy samples from children with autism and gas-trointestinal
disturbances. MBio. 2012; 3(1): e00261-11.
22. Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, et al. Impaired
carbohydrate digestion and transport and mucosal dysbiosis in the intestines of
children with autism and gastrointestinal disturbances. PLoS
One. 2011; 6(9): e24585.
23. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of Prevotella and
other fermenters in intestinal microflora of autistic children. PLoS One. 2013; 8(7): e68322.
24. Yap IK, Angley M, Veselkov KA, Holmes E,
Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children
with autism from their unaffected siblings and age-matched controls. J Proteome
Res. 2010; 9(6): 2996-3004.
25. Wang H, Liang S, Wang M, Gao J, Sun
C, Wang J, et al. Potential serum biomarkers
from a metabolomics study of autism. J Psychiatry Neurosci. 2016; 41(1):27-37.
26. Gabriele S, Sacco R, Cerullo S, Neri C, Urbani A, Tripi G, et al. Urinary
p-cresol is elevated in young French children with autism spectrum disorder: a
replication study. Bio-markers. 2014; 19(6):463-70.
27. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, et al. Impact of intestinal microbiota on
intestinal luminal metabolome. Sci Rep. 2012; 2:233.
28. Wikoff
WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters
EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian
blood metabolites. Proc Natl Acad Sci U S A. 2009;
106(10): 3698-703.
31. Org E, Parks BW, Joo JW, Emert B, Schwartzman
W, Kang EY, et al. Genetic and environmental control of host-gut microbiota
interactions. Genome Res. 2015; 25(10):1558-69.
32. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium
controls diet-induced obesity. Proc Natl Acad Sci U S
A. 2013; 110 (22):9066-71.
34. Brown AS, Sourander A, Hinkka-Yli-Salomaki S, McKeague IW, Sundvall J, Surcel HM. Elevated
maternal C-reactive protein and autism in a national birth cohort. Mol
Psychiatry. 2014; 19(2):259-64.
35. Estes ML, McAllister AK. Immune
mediators in the brain and peripheral tissues in autism spectrum disorder. Nat
Rev Neurosci. 2015; 16(8):469-86.
36. McDougle
CJ, Landino SM, Vahabzadeh
A, O'Rourke J, Zurcher NR, Finger BC, et al. Toward an immune-mediated subtype
of autism spectrum disorder. Brain Res. 2015; 1617:72-92.
37. Patterson
PH. Immune involvement in schizophrenia and autism: etiology, pathology
and animal models. Behav Brain Res. 2009; 204(2):313-21.
39. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial
activation and neuroinflammation in the brain of patients with autism. Ann
Neurol. 2005; 57(1): 67-81.
40. Masi
A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ. Cytokine
aberrations in autism spectrum disorder: a systematic review and
meta-analysis. Mol Psychiatry. 2015; 20(4):440-6.
41. El-Ansary
A, Al-Ayadhi L. GABAergic/glutamatergic imbalance
relative to excessive neuroinflammation in autism spectrum disorders. J
Neuroinflammation. 2014; 11:189.
42. Xu N, Li X, Zhong Y. Inflammatory
cytokines: potential bio-markers of immunologic dysfunction in autism spectrum
disorders. Mediators Inflamm. 2015; 2015:531518.
43. Goines PE, Croen LA, Braunschweig D, Yoshida CK, Grether
J, Hansen R, et al. Increased midgestational IFN-gamma, IL-4 and IL-5 in women
bearing a child with autism: A case-control study. Molecular Autism. 2011;
2:13.
44. Thaiss CA,
Zmora N, Levy M, Elinav E.
The microbiome and innate immunity. Nature. 2016; 535 (7610):65-74.
45. Hsiao EY, McBride SW, Chow J,
Mazmanian SK, Patterson PH. Modeling an autism risk factor in mice leads to
permanent immune dysregulation. Proc Natl Acad Sci
U S A. 2012; 109(31):12776-81.
46. Malkova
NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH.
Maternal immune activation yields offspring displaying mouse versions of the
three core symptoms of autism. Brain Behav Immun.
2012; 26(4):607-16.
47. Shin Yim
Y, Park A, Berrios J, Lafourcade M, Pascual LM,
Soares N, et al. Reversing behavioral abnormalities in mice exposed to maternal
inflammation. Nature. 2017; 549 (7673):482-7.
48. Wu HJ, Ivanov, II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous
bacteria drive autoimmune arthritis via T helper 17 cells. Immunity.2010;
32(6):815-27.
49. Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan
TG, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in
mouse offspring. Nature. 2017; 549 (7673):528-32.
50. Round JL, Lee SM, Li J, Tran G,
Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway
establishes colonization by a commensal of the human microbiota. Science. 2011;
332 (6032):974-7.
51. Ivanov, II, Frutos Rde L, Manel N, Yoshinaga
K, Rifkin DB, Sartor RB, and et al. Specific microbiota direct the
differentiation of IL-17-producing T-helper cells in the mucosa of the small
intestine. Cell Host Microbe.2008; 4(4):337-49.
52. Courchesne E, Mouton PR, Calhoun
ME, Semendeferi K, Ahrens-Barbeau C, Hallet
MJ, et al. Neuron number and size in prefrontal cortex of children with autism.
JAMA. 2011; 306(18):2001-10.
53. Hazlett HC, Gu H, Munsell BC, Kim
SH, Styner M, Wolff JJ, et al. Early brain development in
infants at high risk for autism spectrum disorder. Nature. 2017;
542(7641):348-51.
54. Le Belle JE, Sperry J, Ngo A, Ghochani Y, Laks DR, Lopez-Aranda M, et al. Maternal inflammation
contributes to brain overgrowth and autism-associated behaviors through altered
redox signaling in stem and progenitor cells. Stem Cell Reports. 2014; 3(5):725-34.
55. Oskvig
DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M. Maternal immune activation by LPS selectively
alters specific gene expression profiles of interneuron migration and oxidative
stress in the fetus without triggering a fetal immune response. Brain Behav Immun. 2012; 26(4): 623-34.
56. Ogbonnaya ES, Clarke G, Shanahan F, Dinan
TG, Cryan JF, O'Leary OF. Adult Hippocampal Neurogenesis is regulated by the microbiome. Biol
Psychiatry. 2015; 78(4): e7-9.
57. Edmonson C, Ziats MN, Rennert OM. Altered
glial marker expression in autistic post-mortem prefrontal cortex and
cerebellum. Molecular Autism. 2014; 5(1):3.
58. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi
M, Takebayashi K, et al. Microglial activation in
young adults with autism spectrum disorder. JAMA Psychiatry. 2013; 70(1):49-58.
59. Erny
D, Hrabe de Angelis AL, Jaitin
D, Wieghofer P, Staszewski
O, David E, et al. Host microbiota constantly control maturation and function
of microglia in the CNS. Nat Neurosci. 2015;
18(7):965-77.
60. Tochitani S, Ikeno T, Ito T,
Sakurai A, Yamauchi T, Matsuzaki H. Administration of
non-absorbable antibiotics to pregnant mice to perturb the maternal gut
microbiota is associated with alterations in offspring behavior. PLoS One. 2016; 11 (1): e 0138293.
61. Degroote
S, Hunting DJ, Baccarelli AA, Takser
L. Maternal gut and fetal brain connection: increased anxiety and reduced
social interactions in Wistar rat offspring following periconceptional
antibiotic exposure. Prog Neuropsy-chopharmacol Biol
Psychiatry. 2016; 71:76-82.
62. Dominguez-Bello MG, Costello EK,
Contreras M, Magris M, Hidalgo G, Fierer N,
and et al. Delivery mode shapes the acquisition and structure of the initial
microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010; 107 (26):11971-5.
63. Biasucci
G, Benenati B, Morelli L, Bessi
E, Boehm G. Cesarean delivery may affect the early biodiversity of intestinal
bacteria. J Nutr. 2008; 138(9):1796S-800S.
64. Magne
F, Puchi Silva A, Carvajal B, Gotteland
M. The elevated rate of cesarean section and
its contribution to non-communicable chronic diseases in Latin America:
the growing involvement of the microbiota. Front Pediatr.
2017; 5:192.
65. Curran EA, Dalman C, Kearney PM,
Kenny LC, Cryan JF, Dinan TG, et al.
Association between obstetric modes of delivery and autism spectrum disorder: a
population-based sibling design study. JAMA Psychiatry. 2015; 72(9):935-42.
66. Glasson EJ, Bower C, Petterson B, de Klerk N, Chaney G, Hallmayer
JF. Perinatal factors and the development of autism: a population study. Arch Gen
Psychiatry. 2004; 61(6):618-27.
67. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al.
Partial restoration of the microbiota of cesarean-born infants via virginal
microbial transfer. Nat Med. 2016; 22(3):250-3.
69. Jasarevic E, Howerton CL, Howard CD, Bale TL. Alterations in
the vaginal microbiome by maternal stress are associated with metabolic
reprogramming of the offspring gut and brain. Endocrinology. 2015;
156(9):3265-76.
70. Golubeva
AV, Crampton S, Desbonnet L, Edge D, O'Sullivan O, Lomasney KW, et al. Prenatal stress-induced alterations in
major physiological systems correlate with gut microbiota composition in
adulthood. Psychoneuroendocrino-logy. 2015; 60:58-74.
71. Lee BK, Magnusson C, Gardner RM, Blomstrom A, Newschaffer CJ,
Burstyn I, et al. Maternal hospitalization with infection during pregnancy and
risk of autism spectrum disorders. Brain Behav Immun.
2015; 44:100-5.
72. Jiang HY, Xu LL, Shao L, Xia RM, Yu
ZH, Ling ZX, et al. Maternal infection during pregnancy and risk of autism
spectrum disorders: A systematic review and meta-analysis. Brain Behav Immun. 2016; 58: 165-72.
73. de Theije
CG, Wopereis H, Ramadan M, van Eijndthoven
T, Lambert J, Knol J, et al. Altered gut microbiota
and activity in a murine model of autism spectrum
disorders. Brain Behav Immun. 2014; 37:197-206.
74. Pearson BL, Simon JM, McCoy ES,
Salazar G, Fragola G, Zylka MJ.
Identification of chemicals that mimic transcriptional changes associated with
autism, brain aging and neuro-degeneration. Nat Commun.
2016; 7:11173.
76. Singh K, Connors SL, Macklin EA,
Smith KD, Fahey JW, Talalay P, et al. Sulforaphane treatment of autism spectrum
disorder (ASD). Proc Natl Acad Sci U S A. 2014; 111
(43):15550-5.
77. Accordino RE, Kidd C, Politte LC,
Henry CA, McDougle CJ. Psychopharmacological
interventions in autism spectrum disorder. Expert Opin
Pharmacother. 2016; 17(7):937-52.
78. Politte
LC, Henry CA, McDougle CJ. Psychopharmacological
interventions in autism spectrum disorder. Harv Rev
Psychiatry. 2014; 22(2):76-92.
79. Penagarikano O, Abrahams BS, Herman EI, Winden
KD, Gdalyahu A, Dong H, et al. Absence of CNTNAP2
leads to epilepsy, neuronal migration abnormalities, and core auti-smrelated deficits. Cell. 2011; 147 (1): 235-46.
80. McDougle
CJ, Stigler KA, Erickson CA, Posey DJ. Atypical antipsychotics in children and
adolescents with autistic and other pervasive developmental disorders. J Clin
Psychiatry. 2008; 69 Suppl 4:15-20.
81. McDougle
CJ, Scahill L, McCracken JT, Aman MG, Tierney E,
Arnold LE, et al. Research units on pediatric psychopharmacology (RUPP) autism
network. Background and rati-onale for an initial
controlled study of risperidone. Child Adolesc Psychiatr Clin N Am. 2000; 9(1):201-24.
82. Urbano
M, Okwara L, Manser P,
Hartmann K, Herndon A, Deutsch SI. A trial of d-cycloserine to treat stereotypies in older adolescents and
young adults with autism spectrum disorder. Clin Neuropharmacol.
2014; 37(3):69-72.
83. Kwak MK, Kensler TW. Targeting NRF2 signaling for cancer
chemoprevention. Toxicol Appl Pharmacol.
2010; 244 (1):66-76.
84. Penagarikano O, Lazaro MT, Lu XH, Gordon A, Dong H, Lam HA, et
al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse
model of autism. Sci Transl Med. 2015; 7
(271):271ra8.
85. Guastella AJ, Hickie IB. Oxytocin
treatment, circuitry, and autism: a critical review of the literature placing
oxytocin into the autism context. Biol Psychiatry.2016; 79(3):234-42.
86. Stoop R. Neuromodulation by
oxytocin and vasopressin. Neuron. 2012; 76(1):142-59.
87. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petr-osino JF,
Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced
social and synaptic deficits in offspring.
Cell. 2016; 165(7):1762-75.
88. Rossen
NG, MacDonald JK, de Vries EM, D'Haens GR, de Vos WM,
Zoetendal EG, et al. Fecal microbiota transplantation
as novel therapy in gastroenterology: A systematic review. World J
Gastroenterol. 2015; 21(17):5359-71.
89. Li Q, Han Y, Dy ABC, Hagerman RJ.
The Gut micro-biota and autism spectrum disorders. Front Cell Neurosci. 2017; 11: 120.
90. Kelly CR, Kahn S, Kashyap P, Laine
L, Rubin D, Atreja A, et al. Update on fecal microbiota
transplantation 2015: Indi-cations, Methodologies, Mechanisms, and Outlook.
Gastro-enterology. 2015; 149(1):223-37.
91. Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Microbiota transfer
therapy alters gut ecosystem and improves gastrointestinal and autism symptoms:
an open-label study. Microbiome. 2017; 5(1):10.
92. Scahill
L, Jeon S, Boorin SJ, McDougle
CJ, Aman MG, Dziura J, et al. Weight gain and
metabolic consequences of risperidone in young children with autism spectrum
disorder. J Am Acad Child Adolesc
Psychiatry. 2016; 55(5):415-23.
93. van Nood
E, Vrieze A, Nieuwdorp M,
Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal
infusion of donor feces for recurrent Clostridium
difficile. N Engl J Med. 2013; 368 (5): 407-15.
95. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, et al.
Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J
Gastroenterol. 2014; 109(7):1065-71.
96. Hourigan SK, Oliva-Hemker M. Fecal microbiota transplantation in children: a
brief review. Pediatr Res. 2016; 80 (1):2-6.