Serum Levels of Oxidants and Protein S100B were Associated in First-episode Drug-naïve Patients with Schizophrenia

Lei Liu1, Yanli Li 1, Yun Bian1, FudeYang1, Xianyun Li1, Xiaole Han1, Li Tian2, Song Chen1, Zhiren Wang1, Yunlong Tan1

1Center for Biological Psychiatry, Beijing Huilongguan Hospital & Peking University Huilongguan Clinical Medical School, Changping District, Beijing, China

2University of Helsinki, Neuroscience Center, Helsinki, Finland

Received January 29, 2019; Accepted May 20, 2019


Background: Patients with schizophrenia have been noted with an elevation of serum S100B protein concentration, but the pathological process is not known. This study was to investigate the relationship between levels of S100B protein and oxidative stress.

Methods: General information and blood sample were collected from the first-episode drug naïve or drug-free acute stage of patients who met the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria for schizophrenia and healthy controls. The serum levels of S100B, total oxidants (TOS) and malonaldehyde (MDA) were used to measure the level of oxidative stress in both patients and healthy controls. General linear regression analysis was performed to examine the association of S100B protein with the levels of oxidative stress.

Results: The levels of serum protein S100B were associated with the concentration of both TOS (Beta=15.77; p=0.0038) and MDA (Beta=7.90; p=0.0068) in the first-episode drug-naive patients (n=29).While both associations were no longer significant in the drug-free acute phase patients (n=29) (p>0.05), the levels of serum S100B was still consistently associated with TOS (Beta=12.42;p=0.0026) and MDA(Beta=4.11;p=0.0480) in the combined group of patients group(n=58). Simultaneous analysis of both oxidative markers, we still found that both TOS (Beta=12.88; p=0.0103) and MDA (Beta=6.46; p=0.0167) were associated with the serum level of protein S100B in the first-episode drug-naive patients, but not drug-free acute phase patients. 

Conclusion: Our results suggest that astrocyte activity, serum levels of oxidants, and their cross-talking might be involved in the pathogenesis of schizophrenia. This warrants a further study for understanding the underlying mechanism.


Oxidative stress; S100B protein; schizophrenia; MDA; total oxidants

Copyright © 2019 by the author(s). Licensee Global Clinical and Translational Research Institute. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (CCBY4.0, https://, which permits un-restricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article:

Liu L, Li Y, Bian Y, Yang F, Li X, Han X, Tian L, Chen S, Wang Z, Tan Y. Serum levels of oxidants and protein S100B were associated in the first-episode drug naïve patients with schizophrenia. Glob Clin Transl Res. 2019; 1 (2):84-92. DOI:10.36316/gcatr.01.0013.


1.       Tramontina F, Conte S, Goncalves D, Gottfried C, Portela LV, Vinade L, et al. Developmental changes in S100B content in brain tissue, cerebrospinal fluid, and astrocyte cultures of rats. Cell Mol Neurobiol. 2002;22(3):373-8.

2.       Koh SX, Lee JK. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 2014;44(3):369-85.

3.       Rothermundt M, Ahn JN, Jorgens S. S100B in schizophrenia: an update. Gen Physiol Biophys. 2009;28 Spec No Focus:F76-81.

4.       Hori H, Yoshimura R, Katsuki A, Atake K, Nakamura J. Relationships between brain-derived neurotrophic factor, clinical symptoms, and decision-making in chronic schizophrenia: data from the Iowa Gambling Task. Frontiers in behavioral neuroscience. 2014;8:417.

5.       Koeva YA, Sivkov ST, Akabaliev VH, Ivanova RY, Deneva TI, Grozlekova LS, et al. Brain-derived neurotrophic factor and its serum levels in schizophrenic patients. Folia medica. 2014;56(1):20-3.

6.       Song X, Fan X, Zhang J, Zheng H, Li X, Pang L, et al. Prolactin serum levels correlate with inflammatory status in drug-naive first-episode schizophrenia. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry. 2014;15(7):546-52.

7.       Xiu MH, Yang GG, Tan YL, Chen da C, Tan SP, Wang ZR, et al. Decreased interleukin-10 serum levels in first-episode drug-naive schizophrenia: relationship to psychopathology. Schizophrenia research. 2014;156(1):9-14.

8.       Okusaga OO. Accelerated aging in schizophrenia patients: the potential role of oxidative stress. Aging Dis. 2014;5(4):256-62.

9.       Emiliani FE, Sedlak TW, Sawa A. Oxidative stress and schizophrenia: recent breakthroughs from an old story. Current opinion in psychiatry. 2014;27(3):185-90.

10.    Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400-9.

11.    Albayrak Y, Unsal C, Beyazyuz M, Unal A, Kuloglu M. Reduced total antioxidant level and increased oxidative stress in patients with deficit schizophrenia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:144-9.

12.    Yelmo-Cruz S, Morera-Fumero AL, Abreu-Gonzalez P. S100B and schizophrenia. Psychiatry Clin Neurosci. 2013;67(2):67-75.

13.    Steiner J, Walter M, Wunderlich MT, Bernstein HG, Panteli B, Brauner M, et al. A new pathophysiological aspect of S100B in schizophrenia: potential regulation of S100B by its scavenger soluble RAGE. Biol Psychiatry. 2009;65(12):1107-10.

14.    Steiner J, Bielau H, Bernstein HG, Bogerts B, Wunderlich MT. Increased cerebrospinal fluid and serum levels of S100B in first-onset schizophrenia are not related to a degenerative release of glial fibrillar acidic protein, myelin basic protein and neurone-specific enolase from glia or neurones. J Neurol Neurosurg Psychiatry. 2006;77(11):1284-7.

15.    Rothermundt M, Falkai P, Ponath G, Abel S, Burkle H, Diedrich M, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry. 2004;9(10):897-9.

16.    Lara DR, Gama CS, Belmonte-de-Abreu P, Portela LV, Goncalves CA, Fonseca M, et al. Increased serum S100B protein in schizophrenia: a study in medication-free patients. J Psychiatr Res. 2001;35(1):11-4.

17.    Aleksovska K, Leoncini E, Bonassi S, Cesario A, Boccia S, Frustaci A. Systematic review and meta-analysis of circulating S100B blood levels in schizophrenia. PLoS One. 2014;9(9):e106342.

18.    Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res. 2007;161:317-25.

19.    Sorci G, Riuzzi F, Arcuri C, Tubaro C, Bianchi R, Giambanco I, et al. S100B protein in tissue development, repair and regeneration. World J Biol Chem. 2013;4(1):1-12.

20.    Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, et al. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res. 2006;83(5):897-906.

21.    Egea-Guerrero JJ, Murillo-Cabezas F, Gordillo-Escobar E, Rodriguez-Rodriguez A, Enamorado-Enamorado J, Revuelto-Rey J, et al. S100B protein may detect brain death development after severe traumatic brain injury. J Neurotrauma. 2013;30(20):1762-9.

22.    Astrand R, Unden J, Romner B. [High time to start using the brain injury marker S100B when diagnosing minor head injuries]. Lakartidningen. 2013;110(38):1675.

23.    Lesko MM, O'Brien SJ, Childs C, Bouamra O, Rainey T, Lecky F. Comparison of several prognostic tools in traumatic brain injury including S100B. Brain Inj. 2014;28(7):987-94.

24.    Heidari K, Asadollahi S, Jamshidian M, Abrishamchi SN, Nouroozi M. Prediction of neuropsychological outcome after mild traumatic brain injury using clinical parameters, serum S100B protein and findings on computed tomography. Brain Inj. 2015;29(1):33-40.

25.    Manev H, Manev R. S100B: an old neurotrophic factor with putative new roles in psychiatric illnesses. J Psychiatr Res. 2001;35(6):347-50.

26.    Schroeter ML, Steiner J. Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Mol Psychiatry. 2009;14(3):235-7.

27.    Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P, et al. Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res. 2007;41(6):523-9.

28.    Schroeter ML, Abdul-Khaliq H, Fruhauf S, Hohne R, Schick G, Diefenbacher A, et al. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr Res. 2003;62(3):231-6.

29.    Rothermundt M, Ponath G, Glaser T, Hetzel G, Arolt V. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology. 2004;29(5):1004-11.

30.    O'Connell K, Thakore J, Dev KK. Levels of S100B are raised in female patients with schizophrenia. BMC Psychiatry. 2013;13:146.

31.    Katsel P, Davis KL, Li C, Tan W, Greenstein E, Kleiner Hoffman LB, et al. Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2008;33(12):2993-3009.

32.    Gattaz WF, Lara DR, Elkis H, Portela LV, Goncalves CA, Tort AB, et al. Decreased S100-beta protein in schizophrenia: preliminary evidence. Schizophrenia research. 2000;43(2-3):91-5.

33.    van de Kerkhof NW, Fekkes D, van der Heijden FM, Verhoeven WM. BDNF and S100B in psychotic disorders: evidence for an association with treatment responsiveness. Acta Neuropsychiatr. 2014;26(4):223-9.

34.    Chen S, Tian L, Chen N, Xiu M, Wang Z, Yang G, et al. Cognitive dysfunction correlates with elevated serum S100B concentration in drug-free acutely relapsed patients with schizophrenia. Psychiatry Res. 2017;247:6-11.

35.    Mondelli V, Howes O. Inflammation: its role in schizophrenia and the potential anti-inflammatory effects of antipsychotics. Psychopharmacology. 2014;231(2):317-8.

36.    Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell'osso B, et al. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:1-4.

37.    Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent patents on inflammation & allergy drug discovery. 2009;3(1):73-80.

38.    de Souza DF, Wartchow K, Hansen F, Lunardi P, Guerra MC, Nardin P, et al. Interleukin-6-induced S100B secretion is inhibited by haloperidol and risperidone. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:14-22.

39.    Dietrich-Muszalska A, Kontek B. Lipid peroxidation in patients with schizophrenia. Psychiatry Clin Neurosci. 2010;64(5):469-75.

40.    Yamaguchi F, Tsuchiya M, Shimamoto S, Fujimoto T, Tokumitsu H, Tokuda M, et al. Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity. Tohoku J Exp Med. 2016;240(1):67-78.

41.    Kaya C, Atas A, Aksoy N, Kaya EC, Abuhandan M. Evaluation of Pre-Treatment and Post-Treatment S100B, Oxidant and Antioxidant Capacity in Children with Diabetic Ketoacidosis. J Clin Res Pediatr Endocrinol. 2015;7(2):109-13.

42.    Lu J, Esposito G, Scuderi C, Steardo L, Delli-Bovi LC, Hecht JL, et al. S100B and APP promote a gliocentric shift and impaired neurogenesis in Down syndrome neural progenitors. PLoS One. 2011;6(7):e22126.

43.    Chong ZZ. S100B raises the alert in subarachnoid hemorrhage. Rev Neurosci. 2016;27(7):745-59.

44.    Tsai MC, Huang TL. Increased activities of both superoxide dismutase and catalase were indicators of acute depressive episodes in patients with major depressive disorder. Psychiatry Res. 2016;235:38-42.

45.    Dadheech G, Mishra S, Gautam S, Sharma P. Evaluation of antioxidant deficit in schizophrenia. Indian J Psychiatry. 2008;50(1):16-20.

46.    Erel O. A new automated colorimetric method for measuring total oxidant status. Clinical biochemistry. 2005;38(12):1103-11.

47.    Cadet JL, Lohr JB. Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. Ann N Y Acad Sci. 1989;570:176-85.

48.    Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, et al. Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci. 2005;17(2):227-31.

49.    Dawn-Linsley M, Ekinci FJ, Ortiz D, Rogers E, Shea TB. Monitoring thiobarbituric acid-reactive substances (TBARs) as an assay for oxidative damage in neuronal cultures and central nervous system. Journal of neuroscience methods. 2005;141(2):219-22.

50.    Sarandol A, Kirli S, Akkaya C, Altin A, Demirci M, Sarandol E. Oxidative-antioxidative systems and their relation with serum S100 B levels in patients with schizophrenia: effects of short term antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(6):1164-9.

51.    Morozzi G, Beccafico S, Bianchi R, Riuzzi F, Bellezza I, Giambanco I, et al. Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-kappaB/YY1/miR-133 axis and NF-kappaB/YY1/BMP-7 axis. Cell Death Differ. 2017;24(12):2077-88.

52.    Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Progress in neuro-psychopharmacology & biological psychiatry. 2011;35(3):676-92.

53.    Halliwell B, Lee CY. Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxidants & redox signaling. 2010;13(2):145-56.

54.    Halliwell B. Oxidative stress and neurodegeneration: where are we now? Journal of neurochemistry. 2006;97(6):1634-58.

55.    Halliwell B. Free radicals and antioxidants - quo vadis? Trends in pharmacological sciences. 2011;32(3):125-30.

56.    Masmoudi-Kouki O, Douiri S, Hamdi Y, Kaddour H, Bahdoudi S, Vaudry D, et al. Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. Journal of neurochemistry. 2011;117(3):403-11.

57.    Esposito G, Imitola J, Lu J, De Filippis D, Scuderi C, Ganesh VS, et al. Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol Genet. 2008;17(3):440-57.

58.    Lam AG, Koppal T, Akama KT, Guo L, Craft JM, Samy B, et al. Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB. Neurobiol Aging. 2001;22(5):765-72.

59.    Lohr JB. Oxygen radicals and neuropsychiatric illness. Some speculations. Archives of general psychiatry. 1991;48(12):1097-106.

60.    Takahashi S. [Astroglial protective mechanisms against ROS under brain ischemia]. Rinsho shinkeigaku = Clinical neurology. 2011;51(11):1032-5.

61.    Bolanos JP, Almeida A. Modulation of astroglial energy metabolism by nitric oxide. Antioxidants & redox signaling. 2006;8(5-6):955-65.

62.    Shivakumar V, Kalmady SV, Venkatasubramanian G, Ravi V, Gangadhar BN. Do schizophrenia patients age early? Asian J Psychiatr. 2014;10:3-9.

63.    Papanastasiou E, Gaughran F, Smith S. Schizophrenia as segmental progeria. Journal of the Royal Society of Medicine. 2011;104(11):475-84.

64.    Kirkpatrick B, Messias E, Harvey PD, Fernandez-Egea E, Bowie CR. Is schizophrenia a syndrome of accelerated aging? Schizophrenia bulletin. 2008;34(6):1024-32.

65.    Fernandez-Egea E, Bernardo M, Donner T, Conget I, Parellada E, Justicia A, et al. Metabolic profile of antipsychotic-naive individuals with non-affective psychosis. The British journal of psychiatry : the journal of mental science. 2009;194(5):434-8.

66.    Kao HT, Cawthon RM, Delisi LE, Bertisch HC, Ji F, Gordon D, et al. Rapid telomere erosion in schizophrenia. Molecular psychiatry. 2008;13(2):118-9.

67.    Pope S, Land JM, Heales SJ. Oxidative stress and mitochondrial dysfunction in neurodegeneration; cardiolipin a critical target? Biochimica et biophysica acta. 2008;1777(7-8):794-9.

68.    Bialowas-McGoey LA, Lesicka A, Whitaker-Azmitia PM. Vitamin E increases S100B-mediated microglial activation in an S100B-overexpressing mouse model of pathological aging. Glia. 2008;56(16):1780-90.

69.    de Almeida LM, Leite MC, Thomazi AP, Battu C, Nardin P, Tortorelli LS, et al. Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats. Arch Biochem Biophys. 2008;480(1):27-32.

70.    Ribeiro L, Andreazza AC, Salvador M, da Silveira TR, Vieira S, Nora DB, et al. Oxidative stress and S100B protein in cirrhotic children. Neurochem Res. 2007;32(9):1600-3.