Article

Effects of Antipsychotic Treatment on S100B and Oxidative Stress in Patients with Schizophrenia

Xuan Wang 1, Yun Bian1, Lei Liu1, Yaxue Wu1, M.D., FudeYang1, Xianyun Li1, Xiaole Han1, Li Tian2, Xingguang Luo3, Song Chen1, Zhiren Wang1,Yunlong Tan1, Yanli Li 1*.

1Center for Biological Psychiatry, Beijing Huilongguan Hospital, Changping district, Beijing, China

2 The University of Helsinki, Neuroscience Center, Helsinki, Finland

3Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA

Received August 15, 2019, Accepted September 5, 2019

ABSTRACT

Background: The study aimed to examine the antipsychotic treatment effect on the serum S100B and oxidative stress in patients with schizophrenia.

Methods: Subjects consisted of patients with schizophrenia of first-episode drug-naive and drug-free acute phases, and met the DSM-IV diagnostic criteria for schizophrenia. All patients were treated with risperidone for eight weeks. Positive and Negative Syndrome Scale (PANSS) was evaluated, and serum levels of S100B and parameters of oxidative stress including total oxidative status (TOS) and malondialdehyde (MDA) were measured before and after antipsychotic treatment. A general linear random-effect model was used for data analysis.

Results: Antipsychotic treatment with risperidone reduced the levels of S100B significantly in the first episode drug-naive patients with schizophrenia (Beta=24.89; p=0.0087) and marginally in the drug-free acute phase (Beta=15.65; p=0.093), no significant difference in the effect on S100B between patient groups (p=0.4785).  In contrast, antipsychotic treatment increased the levels of MDA in drug-free acute phase schizophrenia (Beta=-6.55; p<0.0001) but not in the first episode drug-naive patients (beta=-0.57; p=0.6631); the effects on MDA were significantly different between two patient groups (p=0.0020). We found that the levels of S100B were only associated with the PANSS negative score in the drug-free acute phase patients who were treated with antipsychotics.

Conclusion: Antipsychotic treatment with risperidone reduced the levels of S100B in first-episode, drug-naive patients with schizophrenia, but may increase the levels of MDA in drug-free acute phase schizophrenia.

KEYWORDS

Antipsychotic treatment, Risperidone, S100B, Oxidative stress, Schizophrenia

Copyright © 2019 by the author(s). Licensee Global Clinical and Translational Research. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (CCBY4.0, https://creative-commons.org /licenses /by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


How to cite this article:

Wang X, Bian Y, Liu L, Wu Y, Yang F,  Li  X, Han X, Tian L, Luo X, Chen S, Wang Z, Zhang F, Tan Y, Li Y. Effects of antipsychotic treatment on S100B and oxidative stress in patients with schizophrenia. Glob Clin Transl Res. 2019; 1(4): 120-127. DOI:10.36316/gcatr.01.0018.

Reference

1.            Long J, Huang G, Liang W, Liang B, Chen Q, Xie J, et al. The prevalence of schizophrenia in mainland China: evidence from epidemiological surveys. Acta Psychiatr Scand. 2014;130(4):244-56.

2.            Monji A, Kato TA, Mizoguchi Y, Horikawa H, Seki Y, Kasai M, et al. Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:115-21.

3.            Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003;60(6):540-51.

4.            Rothermundt M, Falkai P, Ponath G, Abel S, Burkle H, Diedrich M, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry. 2004;9(10):897-9.

5.            Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, et al. Evidence for a wide extra-astrocytic distribution of S100B in human brain. BMC Neurosci. 2007;8:2.

6.            Schroeter ML, Steiner J. Elevated serum levels of the glial marker protein S100B are not specific for schizophrenia or mood disorders. Mol Psychiatry. 2009;14(3):235-7.

7.            Steiner J, Bernstein HG, Bogerts B, Gos T, Richter-Landsberg C, Wunderlich MT, et al. S100B is expressed in, and released from, OLN-93 oligodendrocytes: Influence of serum and glucose deprivation. Neuroscience. 2008;154(2):496-503.

8.            Liu J, Shi Y, Tang J, Guo T, Li X, Yang Y, et al. SNPs and haplotypes in the S100B gene reveal association with schizophrenia. Biochem Biophys Res Commun. 2005;328(1):335-41.

9.            Rothermundt M, Falkai P, Ponath G, Abel S, Bürkle H, Diedrich M, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Molecular Psychiatry. 2004;9:897.

10.          Bitanihirwe BK, Woo TU. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35(3):878-93.

11.          Pedrini M, Massuda R, Fries GR, de Bittencourt Pasquali MA, Schnorr CE, Moreira JC, et al. Similarities in serum oxidative stress markers and inflammatory cytokines in patients with overt schizophrenia at early and late stages of chronicity. J Psychiatr Res. 2012;46(6):819-24.

12.          Boll KM, Noto C, Bonifacio KL, Bortolasci CC, Gadelha A, Bressan RA, et al. Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res. 2017;253:43-8.

13.          Morera-Fumero AL, Diaz-Mesa E, Abreu-Gonzalez P, Fernandez-Lopez L, Cejas-Mendez MD. Low levels of serum total antioxidant capacity and presence at admission and absence at discharge of a day/night change as a marker of acute paranoid schizophrenia relapse. Psychiatry Res. 2017;249:200-5.

14.          Rothermundt M, Missler U, Arolt V, Peters M, Leadbeater J, Wiesmann M, et al. Increased S100B blood levels in unmedicated and treated schizophrenic patients are correlated with negative symptomatology. Mol Psychiatry. 2001;6(4):445-9.

15.          Gattaz WF, Lara DR, Elkis H, Portela LV, Goncalves CA, Tort AB, et al. Decreased S100-beta protein in schizophrenia: preliminary evidence. Schizophr Res. 2000;43(2-3):91-5.

16.          Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):1553-61.

17.          Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342(1-2):1-12.

18.          Steiner J, Bogerts B, Schroeter ML, Bernstein HG. S100B protein in neurodegenerative disorders. Clin Chem Lab Med. 2011;49(3):409-24.

19.          Schroeter ML, Abdul-Khaliq H, Fruhauf S, Hohne R, Schick G, Diefenbacher A, et al. Serum S100B is increased during early treatment with antipsychotics and in deficit schizophrenia. Schizophr Res. 2003;62(3):231-6.

20.          Hendouei N, Hosseini SH, Panahi A, Khazaeipour Z, Barari F, Sahebnasagh A, et al. Negative Correlation between Serum S100B and Leptin Levels in Schizophrenic Patients During Treatment with Clozapine and Risperidone: Preliminary Evidence. Iran J Pharm Res. 2016;15(1):323-30.

21.          Uzbay T, Goktalay G, Kayir H, Eker SS, Sarandol A, Oral S, et al. Increased plasma agmatine levels in patients with schizophrenia. J Psychiatr Res. 2013;47(8):1054-60.

22.          Milleit B, Smesny S, Rothermundt M, Preul C, Schroeter ML, von Eiff C, et al. Serum S100B Protein is Specifically Related to White Matter Changes in Schizophrenia. Front Cell Neurosci. 2016;10:33.

23.          de Souza DF, Wartchow K, Hansen F, Lunardi P, Guerra MC, Nardin P, et al. Interleukin-6-induced S100B secretion is inhibited by haloperidol and risperidone. Prog Neuropsychopharmacol Biol Psychiatry. 2013;43:14-22.

24.          Steiner J, Walter M, Wunderlich MT, Bernstein HG, Panteli B, Brauner M, et al. A new pathophysiological aspect of S100B in schizophrenia: potential regulation of S100B by its scavenger soluble RAGE. Biol Psychiatry. 2009;65(12):1107-10.

25.          Sarandol A, Kirli S, Akkaya C, Altin A, Demirci M, Sarandol E. Oxidative-antioxidative systems and their relation with serum S100 B levels in patients with schizophrenia: effects of short term antipsychotic treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(6):1164-9.

26.          Zhang XY, Xiu MH, Song C, Chen DC, Wu GY, Haile CN, et al. Increased serum S100B in never-medicated and medicated schizophrenic patients. J Psychiatr Res. 2010;44(16):1236-40.

27.          Qi LY, Xiu MH, Chen DC, Wang F, Kosten TA, Kosten TR, et al. Increased serum S100B levels in chronic schizophrenic patients on long-term clozapine or typical antipsychotics. Neurosci Lett. 2009;462(2):113-7.

28.          Steiner J, Myint AM, Schiltz K, Westphal S, Bernstein HG, Walter M, et al. S100B Serum Levels in Schizophrenia Are Presumably Related to Visceral Obesity and Insulin Resistance. Cardiovasc Psychiatry Neurol. 2010;2010:480707.

29.          Steiner J, Walter M, Guest P, Myint AM, Schiltz K, Panteli B, et al. Elevated S100B levels in schizophrenia are associated with insulin resistance. Mol Psychiatry. 2010;15(1):3-4.

30.          Schumberg K, Polyakova M, Steiner J, Schroeter ML. Serum S100B Is Related to Illness Duration and Clinical Symptoms in Schizophrenia-A Meta-Regression Analysis. Front Cell Neurosci. 2016;10:46.

31.          Aleksovska K, Leoncini E, Bonassi S, Cesario A, Boccia S, Frustaci A. Systematic review and meta-analysis of circulating S100B blood levels in schizophrenia. PLoS One. 2014;9(9):e106342.

32.          Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M. Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol. 2009;19(2):220-30.

33.          Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15(7):2011-35.

34.          Martins-de-Souza D, Harris LW, Guest PC, Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal. 2011;15(7):2067-79.

35.          Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400-9.

36.          Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA, et al. Marked reduction of soluble superoxide dismutase-1 (SOD1) in cerebrospinal fluid of patients with recent-onset schizophrenia. Mol Psychiatry. 2013;18(1):10-1.

37.          Kriisa K, Haring L, Vasar E, Koido K, Janno S, Vasar V, et al. Antipsychotic Treatment Reduces Indices of Oxidative Stress in First-Episode Psychosis Patients. Oxid Med Cell Longev. 2016;2016:9616593.

38.          Sarandol A, Sarandol E, Acikgoz HE, Eker SS, Akkaya C, Dirican M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin Neurosci. 2015;69(11):699-707.

39.          Peet M, Laugharne J, Rangarajan N, Reynolds GP. Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment. Int Clin Psychopharmacol. 1993;8(3):151-3.

40.          Zhang XY, Zhou DF, Cao LY, Chen DC, Zhu FY, Wu GY. Blood superoxide dismutase level in schizophrenic patients with tardive dyskinesia: association with dyskinetic movements. Schizophr Res. 2003;62(3):245-50.

41.          Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP. Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res. 2003;62(3):195-204.

42.          Skosnik PD, Yao JK. From membrane phospholipid defects to altered neurotransmission: is arachidonic acid a nexus in the pathophysiology of schizophrenia? Prostaglandins Leukot Essent Fatty Acids. 2003;69(6):367-84.

43.          Tsai G, Goff DC, Chang RW, Flood J, Baer L, Coyle JT. Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry. 1998;155(9):1207-13.

44.          Yao JK, Reddy R, van Kammen DP. Abnormal age-related changes of plasma antioxidant proteins in schizophrenia. Psychiatry Res. 2000;97(2-3):137-51.

45.          Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP. Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res. 2002;58(1):1-10.

46.          Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY. Elevated blood superoxide dismutase in neuroleptic-free schizophrenia: association with positive symptoms. Psychiatry Res. 2003;117(1):85-8.

47.          Kunz M, Gama CS, Andreazza AC, Salvador M, Cereser KM, Gomes FA, et al. Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(7):1677-81.

48.          Devanarayanan S, Nandeesha H, Kattimani S, Sarkar S. Relationship between matrix metalloproteinase-9 and oxidative stress in drug-free male schizophrenia: a case control study. Clin Chem Lab Med. 2016;54(3):447-52.

49.          Noto C, Ota VK, Gadelha A, Noto MN, Barbosa DS, Bonifacio KL, et al. Oxidative stress in drug naive first episode psychosis and antioxidant effects of risperidone. J Psychiatr Res. 2015;68:210-6.

50.          Reyazuddin M, Azmi SA, Islam N, Rizvi A. Oxidative stress and level of antioxidant enzymes in drug-naive schizophrenics. Indian J Psychiatry. 2014;56(4):344-9.

51.          Fraguas D, Diaz-Caneja CM, Rodriguez-Quiroga A, Arango C. Oxidative Stress and Inflammation in Early Onset First Episode Psychosis: A Systematic Review and Meta-Analysis. Int J Neuropsychopharmacol. 2017;20(6):435-44.

52.          Esterbauer H, Dieber-Rotheneder M, Waeg G, Puhl H, Tatzber F. Endogenous antioxidants and lipoprotein oxidation. Biochem Soc Trans. 1990;18(6):1059-61.

53.          Gunes M, Camkurt MA, Bulut M, Demir S, Ibiloglu AO, Kaya MC, et al. Evaluation of Paraoxonase, Arylesterase and Malondialdehyde Levels in Schizophrenia Patients Taking Typical, Atypical and Combined Antipsychotic Treatment. Clin Psychopharmacol Neurosci. 2016;14(4):345-50.

54.          Zhang XY, Chen DC, Tan YL, Tan SP, Wang ZR, Yang FD, et al. The interplay between BDNF and oxidative stress in chronic schizophrenia. Psychoneuroendocrinology. 2015;51:201-8.

55.          Kropp S, Kern V, Lange K, Degner D, Hajak G, Kornhuber J, et al. Oxidative stress during treatment with first- and second-generation antipsychotics. J Neuropsychiatry Clin Neurosci. 2005;17(2):227-31.

56.          Hendouei N, Farnia S, Mohseni F, Salehi A, Bagheri M, Shadfar F, et al. Alterations in oxidative stress markers and its correlation with clinical findings in schizophrenic patients consuming perphenazine, clozapine and risperidone. Biomed Pharmacother. 2018;103:965-72.

57.          Sadowska-Bartosz I, Galiniak S, Bartosz G, Zuberek M, Grzelak A, Dietrich-Muszalska A. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr Res. 2016;176(2-3):245-51.

58.          Hajjar I, Hayek SS, Goldstein FC, Martin G, Jones DP, Quyyumi A. Oxidative stress predicts cognitive decline with aging in healthy adults: an observational study. J Neuroinflammation. 2018;15(1):17.