Review
Gut Microbiota and
Antipsychotics Induced Metabolic Alteration
Dong-Yu Kang1, Su-Juan
Li1, Chen-Chen Liu1, Ren-Rong Wu1,2
1Mental Health
Institute of the Second Xiangya Hospital, Central
South University; Chinese National Clinical Research Center on Mental
Disorders; Chinese National Technology Institute on Mental Disorders; Hunan Key
Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
2Shanghai
Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai
200031, China
Received
November 11, 2019; Accepted December 04, 2019
ABSTRACT
Schizophrenia
is a chronic and severe mental disorder with antipsychotics as primary
medications, but the antipsychotics-induced metabolic side effects may
contribute to the elevated risk of overall morbidity and mortality in patients
with psychiatric disease. With the development in sequencing technology and
bioinformatics, dysbiosis has been shown to contribute to body weight gain and
metabolic dysfunction. However, the role of gut microbiota in the
antipsychotics-induced metabolic alteration remains unknown. In this paper, we
reviewed the recent studies of the gut microbiota with psychiatric disorders
and antipsychotic-induced metabolic dysfunction. Patients with neuropsychiatric
disorders may have a different composition of gut microbiota compared with
healthy controls. In addition, it seems that the use of antipsychotics is
concurrently associated with both altered composition of gut microbiota and
metabolic disturbance. Further study is needed to address the role of gut
microbiota in the development of neuropsychiatric disorders and
antipsychotic-induced metabolic disturbance, to develop novel therapeutics for
both.
KEYWORDS:
Gut microbiota;
neuropsychiatric disorder; metabolism; antipsychotics
Copyright © 2019 by the author(s).
Licensee Global Clinical and Translational Research. This is an open-access
article distributed under the terms and conditions of the Creative Commons
Attribution License (CCBY4.0, https:// creative-commons.org /licenses
/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium provided the original work is properly cited.
How to cite this
article:
Wang X, Bian Y, Liu L, Wu Y, Yang F, Li X, Han X, Tian L, Luo X,
Chen S, Wang Z, Tan Y, Li Y. Effects of antipsychotic treatment on S100B and oxidative
stress in patients with schizophrenia. Glob
Clin Transl Res. 2019; 1(4): 131-137.
DOI:10.36316/gcatr.01.0020.
References
1.
Whitman WB, Coleman DC,
Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A.
1998;95(12):6578-83.
2.
Clemente JC, Ursell LK, Parfrey
LW, Knight R. The impact of the gut microbiota on human health: an integrative
view. Cell. 2012;148(6):1258-70.
3.
Eckburg PB, Bik EM, Bernstein CN,
Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal
microbial flora. Science (New York, NY). 2005;308(5728):1635-8.
4.
Sekirov I, Russell SL, Antunes
LC, Finlay BB. Gut microbiota in health and disease. Physiological reviews. 2010;90(3):859-904.
5.
Gill SR, Pop M, Deboy RT, Eckburg
PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis of the human distal
gut microbiome. Science (New York, NY). 2006;312(5778):1355-9.
6.
Sharon G, Sampson TR, Geschwind
DH, Mazmanian SK. The Central Nervous System and the Gut Microbiome. Cell.
2016;167(4):915-32.
7.
Kelly JR, Clarke G, Cryan JF,
Dinan TG. Brain-gut-microbiota axis: challenges for translation in psychiatry.
Ann Epidemiol. 2016;26(5):366-72.
8.
Gacias M, Gaspari S, Santos PM,
Tamburini S, Andrade M, Zhang F, et al. Microbiota-driven transcriptional
changes in prefrontal cortex override genetic differences in social behavior.
Elife. 2016;5.
9.
De Hert M, Detraux J, van Winkel
R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated
with antipsychotic drugs. Nat Rev Endocrinol. 2011;8(2):114-26.
10. Cohen D, De Hert M. Endogenic and iatrogenic diabetes mellitus in
drug-naive schizophrenia: the role of olanzapine and its place in the
psychopharmacological treatment algorithm. Neuropsychopharmacology : official
publication of the American College of Neuropsychopharmacology.
2011;36(11):2368-9.
11. Covell NH, Weissman EM, Schell B, McCorkle BH, Summerfelt WT, Weiden PJ,
et al. Distress with medication side effects among persons with severe mental
illness. Adm Policy Ment Health. 2007;34(5):435-42.
12. Vancampfort D, Sweers K, Probst M, Maurissen K, Knapen J, Minguet P, et
al. Association of the metabolic syndrome with physical activity perfor-mance
in patients with schizophrenia. Diabetes & metabolism. 2011;37(4):318-23.
13. De Hert M, Peuskens B, van Winkel R, Kalnicka D, Hanssens L, Van Eyck D,
et al. Body weight and self-esteem in patients with schizophrenia evaluated
with B-WISE. Schizophrenia research. 2006;88(1-3):222-6.
14. Weiden PJ, Mackell JA, McDonnell DD. Obesity as a risk factor for
antipsychotic noncompliance. Schizophr Res. 2004;66(1):51-7.
15. Basson BR, Kinon BJ, Taylor CC, Szymanski KA, Gilmore JA, Tollefson GD.
Factors influencing acute weight change in patients with schizophrenia treated
with olanzapine, haloperidol, or risperidone. The Journal of clinical
psychiatry. 2001;62(4):231-8.
16. Cortes B, Becker J, Mories Alvarez MT, Marcos AI, Molina V. Contribution
of baseline body mass index and leptin serum level to the prediction of early
weight gain with atypical antipsychotics in schizo-phrenia. Psychiatry Clin
Neurosci. 2014;68(2):127-32.
17. Wampers M, Hanssens L, van Winkel R, Heald A, Collette J, Peuskens J, et
al. Differential effects of olanzapine and risperidone on plasma adiponectin
levels over time: results from a 3-month prospective open-label study. Eur
Neuropsychopharmacol. 2012;22(1):17-26.
18. Conde J, Scotece M, Gomez R, Lopez V, Gomez-Reino JJ, Lago F, et al.
Adipokines: biofactors from white adipose tissue. A complex hub among
inflammation, metabolism, and immunity. Biofactors. 2011;37 (6):413-20.
19. Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic,
GABAergic and cannabinoid neurotransmission associated with olanzapine-induced
weight gain. PloS one. 2012;7(3):e33548.
20. Gothelf D, Falk B, Singer P, Kairi M, Phillip M, Zigel L, et al. Weight
gain associated with increased food intake and low habitual activity levels in
male adolescent schizophrenic inpatients treated with olanzapine. Am J
Psychiatry. 2002;159(6):1055-7.
21. Cuerda C, Velasco C, Merchan-Naranjo J, Garcia-Peris P, Arango C. The
effects of second-generation antipsychotics on food intake, resting energy
expenditure and physical activity. Eur J Clin Nutr. 2014;68(2):146-52.
22. Cuerda C, Merchan-Naranjo J, Velasco C, Gutierrez A, Leiva M, de Castro
MJ, et al. Influence of resting energy expenditure on weight gain in
adolescents taking second-generation antipsychotics. Clin Nutr.
2011;30(5):616-23.
23. Sharpe JK, Stedman TJ, Byrne NM, Hills AP. Low-fat oxidation may be a
factor in obesity among men with schizophrenia. Acta Psychiatr Scand. 2009;119
(6):451-6.
24. Chen DC, Du XD, Yin GZ, Yang KB, Nie Y, Wang N, et al. Impaired glucose
tolerance in first-episode drug-naive patients with schizophrenia:
relationships with clinical phenotypes and cognitive deficits. Psychol Med.
2016;46(15):3219-30.
25. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al.
Extensive impact of non-antibiotic drugs on human gut bacteria. Nature.
2018;555(7698):623-8.
26. Komaroff AL. The Microbiome and Risk for Obesity and Diabetes. Jama.
2017;317(4):355-6.
27. Xu R, Wu B, Liang J, He F, Gu W, Li K, et al. Altered gut microbiota and
mucosal immunity in patients with schizophrenia. Brain, behavior, and immunity.
2019.
28. Li K, Hu Z, Ou J, K X. Altered Gut Microbiome in Autism Spectrum Disorder:
Potential Mechanism and Implications for Clinical Intervention. Glob Clin
Transl Res. 2019;1(1):45-52.
29. Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, et al. The
gut microbiome composition associates with bipolar disorder and illness
severity. J Psychiatr Res. 2017;87:23-9.
30. Kelly JR, Borre Y, C OB, Patterson E, El Aidy S, Deane J, et al. Transferring
the blues: Depression-associated gut microbiota induces neurobehavioural
changes in the rat. Journal of psychiatric research. 2016;82:109-18.
31. Zhnag F, Zhao J. China are prepared to fight against emerging mental
health disorders. International Journal of Emergency Mental Health.
2015;17(3):628-34.
32. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M,
et al. The Microbiota-Gut-Brain Axis. Physiological reviews.
2019;99(4):1877-2013.
33. Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E,
et al. Host microbiota constantly control maturation and function of microglia
in the CNS. Nature neuroscience. 2015;18(7):965-77.
34. Evrensel A, Ceylan ME. The Gut-Brain Axis: The Missing Link in Depression.
Clinical psychopharmacology and neuroscience : the official scientific journal
of the Korean College of Neuropsychopharmacology. 2015;13(3):239-44.
35. Sun M, Wu W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids,
GPCR, and inflammatory bowel diseases. J Gastroenterol. 2017;52(1):1-8.
36. Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the Force Be With You: The
Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS
Drugs. 2016;30(11):1019-41.
37. Orikasa S, Nabeshima K, Iwabuchi N, Xiao JZ. Effect of repeated oral
administration of Bifidobacterium longum BB536 on apomorphine-induced rearing
behavior in mice. Biosci Microbiota Food Health. 2016;35(3):141-5.
38. Chen H, Nwe PK, Yang Y, Rosen CE, Bielecka AA, Kuchroo M, et al. A Forward
Chemical Genetic Screen Reveals Gut Microbiota Metabolites That Modulate Host
Physiology. Cell. 2019;177(5):1217-31 e18.
39. Fulling C, Dinan TG, Cryan JF. Gut Microbe to Brain Signaling: What
Happens in Vagus. Neuron. 2019;101(6):998-1002.
40. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al.
Ingestion of lactobacillus strain regulates emotional behavior and central GABA
receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci.
2011;108(38):16050-5.
41. Cani PD, Lecourt E, Dewulf EM, Sohet FM, Pachikian BD, Naslain D, et al.
Gut microbiota fermentation of prebiotics increases satietogenic and incretin
gut peptide production with consequences for appetite sensation and glucose
response after a meal. Am J Clin Nutr. 2009;90(5):1236-43.
42. Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. Microbiota-derived
short-chain fatty acids promote Th1 cell IL-10 production to maintain
intestinal homeostasis. Nat Commun. 2018;9(1):3555.
43. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut
microbiota suppresses insulin-mediated fat accumulation via the short-chain
fatty acid receptor GPR43. Nat Commun. 2013;4:1829.
44. Fadgyas-Stanculete M, Buga AM, Popa-Wagner A, Dumitrascu DL. The
relationship between irritable bowel syndrome and psychiatric disorders: from
molecular changes to clinical manifestations. J Mol Psychiatry. 2014;2(1):4.
45. Severance EG, Prandovszky E, Castiglione J, Yolken RH. Gastroenterology
issues in schizophrenia: why the gut matters. Curr Psychiatry Rep.
2015;17(5):27.
46. Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The
Microbiota and Neurodevelopmental Disorders. Frontiers in neuroscience.
2017;11:490.
47. Bastiaanssen TFS, Cowan CSM, Claesson MJ, Dinan TG, Cryan JF. Making Sense
of the Microbiome in Psychiatry. Int J Neuropsychopharmacol. 2019;22 (1):37-52.
48. van Kesteren CF, Gremmels H, de Witte LD, Hol EM, Van Gool AR, Falkai PG,
et al. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis
on postmortem brain studies. Transl Psychiatry. 2017;7(3):e1075.
49. Schwarz E, Maukonen J, Hyytiainen T, Kieseppa T, Oresic M, Sabunciyan S,
et al. Analysis of microbiota in first episode psychosis identifies preliminary
associations with symptom severity and treatment response. Schizophr Res.
2018;192:398-403.
50. Zhu F, Ju Y, Wang W, Wang Q, Guo R, Ma Q, et al. Identification of gut
microbiome markers for schizophrenia delineates a potential role of
<em>Streptococcus</em>. bioRxiv. 2019:774265.
51. Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome
from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle
and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5(2):eaau8317.
52. Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CL,
Schweinfurth LA, et al. Effect of probiotic supplementation on schizophrenia
symptoms and association with gastrointestinal functioning: a randomized,
placebo-controlled trial. Prim Care Companion CNS Disord. 2014;16(1).
53. Ng QX, Soh AYS, Venkatanarayanan N, Ho CYX, Lim DY, Yeo WS. A Systematic
Review of the Effect of Probiotic Supplementation on Schizophrenia Symptoms.
Neuropsychobiology. 2019;78(1):1-6.
54. Yolken R, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C, et
al. Individuals hospitalized with acute mania have increased exposure to
antimicrobial medications. Bipolar Disord. 2016;18(5):404-9.
55. Dickerson F, Severance E, Yolken R. The microbiome, immunity, and
schizophrenia and bipolar disorder. Brain Behav Immun. 2017;62:46-52.
56. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal
microbiota composition in patients with major depressive disorder. Brain Behav
Immun. 2015;48:186-94.
57. Dickerson F, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C, et
al. Adjunctive probiotic microorganisms to prevent rehospitalization in
patients with acute mania: A randomized controlled trial. Bipolar Disord.
2018;20(7):614-21.
58. Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, et
al. The neuroactive potential of the human gut microbiota in quality of life
and depression. Nat Microbiol. 2019;4(4):623-32.
59. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, Jr., et
al. HPA axis in major depression: cortisol, clinical symptomatology and genetic
variation predict cognition. Mol Psychiatry. 2017;22(4):527-36.
60. Miller AH, Raison CL. The role of inflammation in depression: from
evolutionary imperative to modern treatment target. Nat Rev Immunol.
2016;16(1):22-34.
61. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal
microbial colonization programs the hypothalamic-pituitary-adrenal system for
stress response in mice. J Physiol. 2004;558(Pt 1):263-75.
62. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, et al. Chronic
gastrointestinal inflammation induces anxiety-like behavior and alters central
nervous system biochemistry in mice. Gastroenterology. 2010;139(6):2102-12 e1.
63. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like
behavior and central neurochemical change in germ-free mice.
Neurogastroenterology and motility : the official journal of the European
Gastrointestinal Motility Society. 2011;23(3):255-64, e119.
64. Foster JA, McVey Neufeld K-A. Gut–brain axis: how the microbiome
influences anxiety and depression. Trends in Neurosciences. 2013;36(5):305-12.
65. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome
remodeling induces depressive-like behaviors through a pathway mediated by the
host's metabolism. Mol Psychiatry. 2016;21(6):786-96.
66. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of
the probiotic Bifidobacterium infantis in the maternal separation model of
depression. Neuroscience. 2010;170(4):1179-88.
67. Li K, Hu Z, ou J, Xia K. Altered Gut Microbiome in Autism Spectrum
Disorder: Potential Mechanism and Implications for Clinical Intervention.
Global Clinical and Translational Research. 2019:45-52.
68. Ou J, Shen Y, Li Y, Xun G, Liu H, He Y, et al. Prenatal Environment and
Perinatal Factors Associated with Autism Spectrum Disorder. Glob Clin Transl
Res. 2019;1(3):100-8.
69. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al.
New evidences on the altered gut microbiota in autism spectrum disorders.
Microbiome. 2017;5(1):24.
70. Ata H, Ekstrom TL, Martinez-Galvez G, Mann CM, Dvornikov AV, Schaefbauer
KJ, et al. Robust activation of microhomology-mediated end joining for
precision gene editing applications. PLoS Genet. 2018;14(9):e1007652.
71. Liu F, Horton-Sparks K, Hull V, Li RW, Martinez-Cerdeno V. The valproic
acid rat model of autism presents with gut bacterial dysbiosis similar to that
in human autism. Mol Autism. 2018;9:61.
72. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. Human Gut
Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice.
Cell. 2019;177(6):1600-18 e17.
73. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF,
Costa-Mattioli M. Microbial Reconstitution Reverses Maternal Diet-Induced
Social and Synaptic Deficits in Offspring. Cell. 2016;165(7):1762-75.
74. Xu M, Xu X, Li J, Li F. Association Between Gut Microbiota and Autism
Spectrum Disorder: A Systematic Review and Meta-Analysis. Front Psychiatry.
2019;10:473.
75. Huhn M, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N,
et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the
acute treatment of adults with multi-episode schizophrenia: a systematic review
and network meta-analysis. Lancet. 2019;394(10202):939-51.
76. Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all
antipsychotics result in weight gain: a meta-analysis. PLoS One.
2014;9(4):e94112.
77. Galling B, Roldan A, Nielsen RE, Nielsen J, Gerhard T, Carbon M, et al.
Type 2 Diabetes Mellitus in Youth Exposed to Antipsychotics: A Systematic
Review and Meta-analysis. JAMA Psychiatry. 2016;73(3):247-59.
78. Mitchell AJ, Vancampfort D, De Herdt A, Yu W, De Hert M. Is the Prevalence
of Metabolic Syndrome and Metabolic Abnormalities Increased in Early
Schizophrenia? A Comparative Meta-Analysis of First Episode, Untreated and
Treated Patients. Schizophrenia bulletin. 2013;39(2):295-305.
79. Skonieczna-Zydecka K, Loniewski I, Misera A, Stachowska E, Maciejewska D,
Marlicz W, et al. Second-generation antipsychotics and metabolism alterations:
a systematic review of the role of the gut microbiome. Psychopharmacology.
2018.
80. Singh R, Bansal Y, Medhi B, Kuhad A. Antipsychotics-induced metabolic
alterations: Recounting the mechanistic insights, therapeutic targets and
pharmacological alternatives. European journal of pharmacology.
2019;844:231-40.
81. Davey KJ, O'Mahony SM, Schellekens H, O'Sullivan O, Bienenstock J, Cotter
PD, et al. Gender-dependent consequences of chronic olanzapine in the rat:
effects on body weight, inflammatory, metabolic and microbiota parameters.
Psychopharmacology (Berl). 2012;221(1):155-69.
82. Davey KJ, Cotter PD, O'Sullivan O, Crispie F, Dinan TG, Cryan JF, et al.
Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction
is attenuated by antibiotic administration in the rat. Translational
psychiatry. 2013;3:e309.
83. Morgan AP, Crowley JJ, Nonneman RJ, Quackenbush CR, Miller CN, Ryan AK, et
al. The antipsychotic olanzapine interacts with the gut microbiome to cause
weight gain in mouse. PloS one. 2014;9(12):e115225.
84. Bahra SM, Weidemann BJ, Castro AN, Walsh JW, deLeon O, Burnett CM, et al.
Risperidone-induced weight gain is mediated through shifts in the gut
microbiome and suppression of energy expenditure. EBioMedicine.
2015;2(11):1725-34.
85. Bahr SM, Tyler BC, Wooldridge N, Butcher BD, Burns TL, Teesch LM, et al.
Use of the second-generation antipsychotic, risperidone, and secondary weight
gain are associated with an altered gut microbiota in children. Transl
Psychiatry. 2015;5:e652.
86. Yuan X, Zhang P, Wang Y, Liu Y, Li X, Kumar BU, et al. Changes in
metabolism and microbiota after 24-week risperidone treatment in drug naive,
normal weight patients with first episode schizophrenia. Schizophrenia
research. 2018;201:299-306.
87. Flowers SA, Evans SJ, Ward KM, McInnis MG, Ellingrod VL. Interaction
Between Atypical Antipsychotics and the Gut Microbiome in a Bipolar Disease
Cohort. Pharmacotherapy. 2017;37(3):261-7.
88. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO,
et al. Effectiveness of antipsychotic drugs in patients with chronic
schizophrenia. N Engl J Med. 2005;353(12):1209-23.
89. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et
al. Expert consensus document: The International Scientific Association for
Probiotics and Prebiotics (ISAPP) consensus statement on the definition and
scope of prebiotics. Nature reviews Gastroenterology & hepatology.
2017;14(8):491-502.
90. FAO/WHO. Health and Nutrition Properties of Probiotics in Food including
Powder Milk with Live Lactic Acid Bacteria. 2002. Report No.: ISSN 0254-4725.
91. Williams NT. Probiotics. Am J Health Syst Pharm. 2010;67(6):449-58.
92. Mombelli B, Gismondo M. The use of probiotics in medical practice.
International journal of antimicrobial agents. 2001;16:531-6.
93. Markowiak P, Slizewska K. Effects of Probiotics, Prebiotics, and
Synbiotics on Human Health. Nutrients. 2017;9(9).
94. Fijan S. Microorganisms with claimed probiotic properties: an overview of
recent literature. Int J Environ Res Public Health. 2014;11(5):4745-67.
95. Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of
probiotics. Nature medicine. 2019;25(5):716-29.
96. Kang JH, Yun SI, Park HO. Effects of Lactobacillus gasseri BNR17 on body
weight and adipose tissue mass in diet-induced overweight rats. Journal of
microbiology (Seoul, Korea). 2010;48(5):712-4.
97. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, et al. Human originated
bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and
show anti-obesity effects in diet-induced obese mice. Biochimica et biophysica
acta. 2006;1761(7):736-44.
98. Chen JJ, Wang R, Li XF, Wang RL. Bifidobacterium longum supplementation
improved high-fat-fed-induced metabolic syndrome and promoted intestinal Reg I
gene expression. Experimental biology and medicine (Maywood, NJ).
2011;236(7):823-31.
99. Chen J, Wang R, Li XF, Wang RL. Bifidobacterium adolescentis
supplementation ameliorates visceral fat accumulation and insulin sensitivity
in an experimental model of the metabolic syndrome. The British journal of
nutrition. 2012;107(10):1429-34.
100. Ejtahed H-S, Angoorani P, Soroush A-R, Atlasi R, Hasani-Ranjbar S,
Mortazavian AM, et al. Probiotics supplementation for the obesity management; A
systematic review of animal studies and clinical trials. Journal of functional
foods. 2019;52:228-42.
101. Luoto R, Kalliomaki M, Laitinen K, Isolauri E. The impact of perinatal
probiotic intervention on the development of overweight and obesity: follow-up
study from birth to 10 years. International journal of obesity (2005).
2010;34(10):1531-7.
102. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al.
Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055)
in adults with obese tendencies in a randomized controlled trial. European
journal of clinical nutrition. 2010;64(6):636-43.
103. Bernini LJ, Simao AN, Alfieri DF, Lozovoy MA, Mari NL, de Souza CH, et al.
Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in
patients with metabolic syndrome: A randomized trial. Effects of probiotics on
metabolic syndrome. Nutrition (Burbank, Los Angeles County, Calif).
2016;32(6):716-9.
104. Chang BJ, Park SU, Jang YS, Ko SH, Joo NM, Kim SI, et al. Effect of
functional yogurt NY-YP901 in improving the trait of metabolic syndrome.
European journal of clinical nutrition. 2011;65(11):1250-5.
105. Gauffin Cano P, Santacruz A, Moya A, Sanz Y. Bacteroides uniformis CECT
7771 ameliorates metabolic and immunological dysfunction in mice with
high-fat-diet induced obesity. PloS one. 2012;7(7):e41079.
106. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et
al. Akkermansia muciniphila and improved metabolic health during a dietary
intervention in obesity: relationship with gut microbiome richness and ecology.
Gut. 2016;65(3):426-36.
107. Andersson U, Branning C, Ahrne S, Molin G, Alenfall J, Onning G, et al.
Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Beneficial
microbes. 2010;1(2):189-96.
108. Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA. Combined effects of
oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in
obese rats. Obesity (Silver Spring, Md). 2014;22(3):763-71.
109. Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on
obesity in high-fat diet induced rats. World journal of gastroenterology.
2010;16(27):3394-401.
110. Okubo R, Koga M, Katsumata N, Odamaki T, Matsuyama S, Oka M, et al. Effect
of bifidobacterium breve A-1 on anxiety and depressive symptoms in
schizophrenia: A proof-of-concept study. J Affect Disord. 2019;245:377-85.
111. Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA,
Savage CLG, et al. Probiotic normalization of Candida albicans in
schizophrenia: A randomized, placebo-controlled, longitudinal pilot study.
Brain Behav Immun. 2017;62:41-5.
112. Tomasik J, Yolken RH, Bahn S, Dickerson FB. Immunomodulatory Effects of
Probiotic Supplementation in Schizophrenia Patients: A Randomized,
Placebo-Controlled Trial. Biomark Insights. 2015;10:47-54.
113. Dhaliwal N, Dhaliwal J, Singh DP, Kondepudi KK, Bishnoi M, Chopra K. The
Probiotic Mixture VSL#3 Reverses Olanzapine-Induced Metabolic Dysfunction in
Mice. Methods Mol Biol. 2019;2011:531-44.
114. Ghaderi A, Banafshe HR, Mirhosseini N, Moradi M, Karimi MA, Mehrzad F, et
al. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia
patients. BMC Psychiatry. 2019;19(1):77.
115. Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive
concept for prebiotics. Nature reviews Gastroenterology & hepatology.
2015;12(5):303-10.
116. Parnell JA, Reimer RA. Weight loss during oligofructose supplementation is
associated with decreased ghrelin and increased peptide YY in overweight and
obese adults. The American Journal of Clinical Nutrition. 2009;89(6):1751-9.
117. Edrisi F, Salehi M, Ahmadi A, Fararoei M, Rusta F, Mahmoodianfard S.
Effects of supplementation with rice husk powder and rice bran on inflammatory
factors in overweight and obese adults following an energy-restricted diet: a
randomized controlled trial. European journal of nutrition. 2018;57(2):833-43.
118. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A. Inulin controls
inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus:
a randomized-controlled clinical trial. Int J Food Sci Nutr. 2014;65(1):117-23.
119. de Luis DA, de la Fuente B, Izaola O, Conde R, Gutierrez S, Morillo M, et
al. Double blind randomized clinical trial controlled by placebo with an alpha
linoleic acid and prebiotic enriched cookie on risk cardiovascular factor in
obese patients. Nutr Hosp. 2011;26(4):827-33.
120. Seidel C, Boehm V, Vogelsang H, Wagner A, Persin C, Glei M, et al.
Influence of prebiotics and antioxidants in bread on the immune system,
antioxidative status and antioxidative capacity in male smokers and
non-smokers. Br J Nutr. 2007;97(2):349-56.
121. Nicolucci AC, Hume MP, Martinez I, Mayengbam S, Walter J, Reimer RA.
Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are
Overweight or With Obesity. Gastroenterology. 2017;153(3):711-22.
122. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG, Neyrinck AM, et
al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics
in genetic obese and diet-induced leptin-resistant mice. Diabetes.
2011;60(11):2775-86.
123. Nihei N, Okamoto H, Furune T, Ikuta N, Sasaki K, Rimbach G, et al. Dietary
alpha-cyclodextrin modifies gut microbiota and reduces fat accumulation in
high-fat-diet-fed obese mice. BioFactors (Oxford, England). 2018.
124. Hamilton MK, Ronveaux CC, Rust BM, Newman JW, Hawley M, Barile D, et al.
Prebiotic milk oligosaccharides prevent development of obese phenotype,
impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.
American journal of physiology Gastrointestinal and liver physiology.
2017;312(5):G474-g87.
125. Kao AC, Spitzer S, Anthony DC, Lennox B, Burnet PWJ. Prebiotic attenuation
of olanzapine-induced weight gain in rats: analysis of central and peripheral
biomarkers and gut microbiota. Transl Psychiatry. 2018;8(1):66.
126. Kao AC, Chan KW, Anthony DC, Lennox BR, Burnet PW. Prebiotic reduction of
brain histone deacetylase (HDAC) activity and olanzapine-mediated weight gain
in rats, are acetate independent. Neuropharmacology. 2019;150:184-91.
127. Kao AC, Safarikova J, Marquardt T, Mullins B, Lennox BR, Burnet PWJ.
Pro-cognitive effect of a prebiotic in psychosis: A double blind placebo
controlled cross-over study. Schizophrenia research. 2019;208:460-1.
128. Nagamine T, Ido Y, Nakamura M, Okamura T. 4(G)-beta-D-galactosylsucrose as
a prebiotics may improve underweight in inpatients with schizophrenia.
Bioscience of microbiota, food and health. 2018;37(2):45-7.
129. Flowers SA, Baxter NT, Ward KM, Kraal AZ, McInnis MG, Schmidt TM, et al.
Effects of Atypical Antipsychotic Treatment and Resistant Starch
Supplementation on Gut Microbiome Composition in a Cohort of Patients with
Bipolar Disorder or Schizophrenia. Pharmacotherapy. 2019;39(2):161-70.
130. Andersson H, Asp N-G, Bruce Å, Roos S, Wadström T, Wold AE. Health effects
of probiotics and prebiotics A literature review on human studies.
Näringsforskning. 2001;45(1):58-75.
131. Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a
review. Journal of food science and technology. 2015;52(12):7577-87.
132. Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and
insulin sensitivity. Nutrition research reviews. 2018;31(1):35-51.
133. Villanueva-Millan MJ, Perez-Matute P, Oteo JA. Gut microbiota: a key
player in health and disease. A review focused on obesity. Journal of
physiology and biochemistry. 2015;71(3):509-25.