Editorial

Measuring Exposome Associated with Health

Survey on life course history, built and ecological environment complements exposomics

Fengyu Zhang, Donald R Mattison

The concept of exposome has received increasing discussion, including the recent Special Issue of Science "Chemistry for Tomorrow's Earth, about the feasibility of using high-resolution mass spectrometry to measure exposome in the body, and tracking the chemicals in the environment and assess their biological effect. We discuss the challenges of measuring and interpreting the exposome and suggest the survey on the life course history, built and ecological environment to characterize the sample of study, and in combination with remote sensing. They should be part of exposomics and provide insights into the study of exposome and health.

Copyright 2020 by Global Clinical and Translational Research

How to cite this article:

Zhang F and Mattison D. Measuring exposome associated with health: survey on life course history, built and ecological environment complements exposomics. Glob Clin Transl Res. 2020; 2(2):46-50.

DOI: 10.36316/gcatr.02.0030.

References

1.         Wild CP. Complementing the genome with an "exposome": the outstanding challenge of environmental exposure meas-urement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847-50.

2.         Brown E. Measuring individual exposome. Emerging Science for Environmental Health Decisions Newsletter. 2012;2012(9):1-13.

3.         Rappaport SM, Smith MT. Environment and disease risks. Science (New York, NY). 2010;330 (6003): 460-1.

4.         Wild CP, Scalbert A, Herceg Z. Measuring the exposome: A powerful basis for evaluating environmental exposures and cancer risk. Environmental and Molecular Mutagenesis. 2013;54(7):480-99.

5.         Wild CP. The exposome: from concept to utility. International Journal of Epidemiology. 2012;41(1):24-32.

6.         DeBord D, Middendorf P, Hoover M. Exposome and exposomics. The National Institute for Occupational Safety and Health, 2014. [Accessed 2020 February 20].

https://www.cdc.gov/niosh/topics/exposome/defaulthtml.

7.         Funk M, Ash C. A cleaner, greener future for chemicals. Science. 2020;367(6476):378-9.

8.         Vermeulen R, Schymanski EL, Barabasi AL, Miller GW. The exposome and health: Where chemistry meets biology. Science. 2020;367(6476):392-6.

9.         Barrett JR. Liver Cancer and Aflatoxin: New information from the Kenyan outbreak. Environmental Health Perspectives. 2005;113(12):A837-A8.

10.      Escher BI, Stapleton HM, Schymanski EL. Tracking complex mixtures of chemicals in our changing environment. Science. 2020;367(6476):388-92.

11.      Lan Q, Zhang L, Li G, Vermeulen R, Weinberg RS, Dosemeci M, et al. Hematotoxicity in workers exposed to low levels of benzene. Science. 2004;306(5702):1774-6.

12.      Elder G. Life Course Dynamics: Trajectories and Transitions Cornell University Press; 1985.

13.      Zhang F, Hughes C. Beyond p-value: the rigor and power of study. Glob Clin Transl Res. 2020;2(1):1-6. .

14.      Andra SS, Austin C, Wright RO, Arora M. Reconstructing prenatal and early childhood exposure to multi-class organic chemicals using teeth: Towards a retrospective temporal exposome. Environment international. 2015;83:137-45.

15.      Barker DJ. The origins of the developmental origins theory. Journal of internal medicine. 2007;261(5):412-7.

16.      Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Archives of general psychiatry. 1987;44(7):660-9.

17.      Thomas WI, Znaniecki F. The Polish Peasant in Europe and America. Boston: The Gorham Press; 1918.

18.      Mannheim K. The problem of generations. In: Mannheim K, editor. Essays on the Sociology of Knowledge. London: RKP; 1928;1952;1972.

19.      International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748-52.

20.      Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nature genetics. 2010; 42(7):565-9.

21.      Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer analyses of cohorts of twins from Sweden, Denmark, and Finland. New England Journal of Medicine. 2000;343(2):78-85.

22.      Czene K, Lichtenstein P, Hemminki K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family‐Cancer Database. International journal of cancer. 2002;99(2):260-6.

23.      Jackson RJ. Environment Meets Health, Again. Science. 2007; 315(5817):1337-.

24.      Renalds A, Smith TH, Hale PJ. A systematic review of built environment and health. Fam Community Health. 2010;33 (1):68-78.

25.      Jackson RJ. The impact of the built environment on health: an emerging field. American journal of public health. 2003;93(9):1382-4.

26.      Ward-Caviness CK, Pu S, Martin CL, Galea S, Uddin M, Wildman DE, et al. Epigenetic predictors of all-cause mortality are associated with objective measures of neighborhood disadvantage in an urban population. Clin Epigenetics. 2020;12(1):44.