Review

Natural Products and Potential Therapeutic Intervention for COVID-19

Fengyu Zhang

March 15, 2021

DOI:10.36316/gcatr.03.0040

ABSTRACT

The coronavirus disease 19 (COVID-19) caused pandemic is still prevailing, but few approved medications are available. While the vaccinations have begun in some areas, it is of concern how the virus mutations will affect the vaccine effectiveness in populations. Various natural products exhibit good pharmacological properties of antiviral, antioxidant, and anti-inflammatory activities that may offer preventive intervention benefits. In addition to that, adequate essential minerals and trace elements (e.g., selenium and zinc) are required for healthy immune function; many natural products from prokaryotic and eukaryotic organisms can be potential drug targets. Among them are plant extracts traditionally used for antiviral and parasite infections. Two phytochemicals, hesperidin, and sulforaphane might be the most promising candidates for effective prophylaxis and mitigating disease severity. Therefore, they deserve a further study of their antiviral mechanisms of action then move to randomized clinical trials to determine appropriate dosing, pharmacokinetic parameters, and their potential efficacy and safety in humans.

KEYWORDS

Natural products, plant extracts, phytochemicals, COVID-19


Copyright©2021 by Global Clinical and Translational Research.

How to cite this article:

Zhang F. Natural products and potential therapeutic interceptions for COVID-19. Glob Clin Transl Res. 2020; 3 (1): 7-20. DOI:10.36316/gcatr.03.0040.

REFERENCES

1.         Zhang F, Walters M. Pathogen genomics and host cellular susceptability factors of COVID-19. Glob Clin Transl Res. 2020;2(4):107-26.

2.         Santos J, Brierley S, Gandhi MJ, Cohen MA, Moschella PC, Declan ABL. Repurposing Therapeutics for Potential Treatment of SARS-CoV-2: A Review. Viruses. 2020;12(7).

3.         Rochwerg B, Agarwal A, Zeng L, Leo YS, Appiah JA, Agoritsas T, et al. Remdesivir for severe covid-19: a clinical practice guideline. BMJ. 2020;370:m2924.

4.         Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020; 39 5(10236):1569-78.

5.         Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, et al. Hydroxychloroquine with or without Azith-romycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020.

6.         Chorin E, Dai M, Shulman E, Wadhwani L, Roi-Bar-Cohen, Barbhaiya C, et al. The QT Interval in Patients with SARS-CoV-2 Infection Treated with Hydroxychloroquine /Azith-romycin. medRxiv. 2020:2020.04.02.20047050.

7.         Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020.

8.         Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous corona-virus infections and novel studies. Phytother Res. 2020.

9.         Paulpandi M, Kavithaa K, Asaikkutty A, Balachandar V, Ayyadurai N, Arul N. Could host cell receptor alteration prevent SARS-CoV-2 viral entry? - Hype or hope. Eur Rev Med Pharmacol Sci. 2020;24(8):4554-7.

10.      Elfiky AA. Natural products may interfere with SARS-CoV-2 attachment to the host cell. J Biomol Struct Dyn. 2020:1-10.

11.      Huang J, Tao G, Liu J, Cai J, Huang Z, Chen JX. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front Pharmacol. 2020;11:588508.

12.      Keusch GT, McAdam KPWJ. Clinical trials during epidemics. The Lancet. 2017;389(10088):2455-7.

13.      Dean NE, Gsell P-S, Brookmeyer R, Crawford FW, Donnelly CA, Ellenberg SS, et al. Creating a Framework for Conducting Randomized Clinical Trials during Disease Outbreaks. New England Journal of Medicine. 2020;382(14):1366-9.

14.      Che C-T, Zhang H. Plant Natural Products for Human Health. International journal of molecular sciences. 2019;20(4):830.

15.      Yoo S, Kim K, Nam H, Lee D. Discovering Health Benefits of Phytochemicals with Integrated Analysis of the Molecular Network, Chemical Properties and Ethnopharmacological Evidence. Nutrients. 2018;10(8).

16.      Kang YR, Choi HY, Lee JY, Jang SI, Kang H, Oh JB, et al. Calorie Restriction Effect of Heat-Processed Onion Extract (ONI) Using In Vitro and In Vivo Animal Models. Int J Mol Sci. 2018;19(3).

17.      Li M, Xu T, Zhou F, Wang M, Song H, Xiao X, et al. Neuro-protective Effects of Four Phenylethanoid Glycosides on HO-Induced Apoptosis on PC12 Cells via the Nrf2/ARE Pathway. Int J Mol Sci. 2018;19(4).

18.      Gugliandolo A, Pollastro F, Grassi G, Bramanti P, Mazzon E. In Vitro Model of Neuroinflammation: Efficacy of Cannabi-gerol, a Non-Psychoactive Cannabinoid. Int J Mol Sci. 2018; 19(7).

19.      Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem Biol Interact. 2021;335:109348.

20.      Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative Inhibitors of SARS-CoV-2 Main Pro-tease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Mar Drugs. 2020; 18(4).

21.      Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Nat Prod Bioprospect. 2020.

22.      Sayed AM, Alhadrami HA, El-Gendy AO, Shamikh YI, Belbahri L, Hassan HM, et al. Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (M(pro)). Microorganisms. 2020;8(7).

23.      Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous corona-virus infections and novel studies. Phytotherapy Research. 2021;35(2):864-76.

24.      Christy MP, Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA Virus Pathogens Including SARS-CoV-2. J Nat Prod. 2021;84(1):161-82.

25.      Williamson G, Kerimi A. Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) Viral Spike Protein-Angiotensin Converting Enzyme-2 (ACE2) interaction. Biochem Pharmacol. 2020:114123.

26.      Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn. 2020:1-16.

27.      Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules. 2020; 25(10).

28.      Gasmi A, Chirumbolo S, Peana M, Noor S, Menzel A, Dadar M, et al. The Role of Diet and Supplementation of Natural Products in COVID-19 Prevention. Biol Trace Elem Res. 2021.

https://doi:10.1007/s12011-021-02623-3

29.      Young TK, Zampella JG. Supplements for COVID-19: A modifiable environmental risk. Clin Immunol. 2020;216: 108465.

30.      Omran HM, Almaliki MS. Influence of NAD+ as an ageing-related immunomodulator on COVID 19 infection: A hypothesis. Journal of Infection and Public Health. 2020;13 (9):1196-201.

31.      Kodis EJ, Smindak RJ, Kefauver JM, Heffner DL, Aschenbach KL, Brennan ER, et al. First Messengers.  eLS, Wiley Online Library 2012

https://doi.org/101002/9780470015902a0024167.

32.      Williams DH, Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products) biosynthesized? J Nat Prod. 1989;52(6):1189-208.

33.      Karlson P, LÜScher M. ‘Pheromones’: a New Term for a Class of Biologically Active Substances. Nature. 1959;183(4653): 55-6.

34.      Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A. 1999;96(4):1639-44.

35.      Joyce EA, Bassler BL, Wright A. Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer. J Bacteriol. 2000;182(13):3638-43.

36.      Kohl JV, Atzmueller M, Fink B, Grammer K. Human pheromones: integrating neuroendocrinology and ethology. Neuro Endocrinol Lett. 2001;22(5):309-21.

37.      Dickerson E. Alkaloids. J Natl Med Assoc. 1913;5(3):157-8.

38.      Mohammed A, Haroun K, Mohamed E. Natural Alkaloids and Diabetes Mellitus: A Review. Endocrine, Metabolic & Immune Disorders - Drug Targets. 2021;21(1):111-30.

39.      Jaeger R, Cuny E. Terpenoids with Special Pharmacological Significance: A Review. Nat Prod Commun. 2016; 11(9): 1373-90.

40.      Bohlmann J, Keeling CI. Terpenoid biomaterials. Plant J. 2008;54(4):656-69.

41.      Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs. 2012;21(12):1801-18.

42.      Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current Opinion in Chemical Biology. 2003;7:275-95.

43.      Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and plant defence-a genomics perspective. Mol Plant Pathol. 2002;3(5):371-90.

44.      Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol. 2019;29(2):e2032.

45.      Xiao D, Li X, Su X, Mu D, Qu Y. Could SARS-CoV-2-induced lung injury be attenuated by vitamin D? International Journal of Infectious Diseases. 2021;102:196-202.

46.      Barros J, Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat Plants. 2016;2(6):16050.

47.      Li B, Wang Z, Li S, Donelan W, Wang X, Cui T, et al. Prepa-ration of lactose-free pasteurized milk with a recom-binant thermostable β-glucosidase from Pyrococcus furiosus. BMC Biotechnol. 2013;13:73.

48.      Goodman C. Natural products at the Hans Knöll Institute. Nature Chemical Biology. 2007;3(7):367-.

49.      Stop neglecting fungi. Nature Microbiology. 2017;2(8): 17120.

50.      Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 2018;360 (6390): 739-42.

51.      Kasozi KI, Niedbała G, Alqarni M, Zirintunda G, Ssempijja F, Musinguzi SP, et al. Bee Venom-A Potential Complementary Medicine Candidate for SARS-CoV-2 Infections. Front Public Health. 2020;8:594458.

52.      Gouda AS, Megarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID-19? Drug Dev Res. 2020.

53.      Facchini PJ. ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annual Review of Plant Physiology and Plant Molecular Biology. 2001;52(1):29-66.

54.      Facchini PJ. ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular Regulation, and Metabolic Engineering Applications. Annu Rev Plant Physiol Plant Mol Biol. 2001;52:29-66.

55.      Kuzuyama T. Biosynthetic studies on terpenoids produced by Streptomyces. The Journal of Antibiotics. 2017;70(7): 811-8.

56.      Goldstein J, Brown M. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425-30. https://doi.org/10.1038/343425a0.

57.      Vogt T. Phenylpropanoid Biosynthesis. Molecular Plant. 2010;3(1):2-20.

58.      Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol. 2010;11(6):829-46.

59.      Ramos SJ, Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, et al. Rare Earth Elements in the Soil Environ-ment. Current Pollution Reports. 2016;2(1):28-50.

60.      Mleczek P, Borowiak K, Budka A, Niedzielski P. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road. Environ Sci Pollut Res Int. 2018;25(24):23695-711.

61.      WHO. Trace elements in human nutrition and health. World Health Organization; 1996.

62.      Chen J. An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pac J Clin Nutr. 2012;21(3):320-6.

63.      Ge K, Xue A, Bai J, Wang S. Keshan disease-an endemic cardiomyopathy in China. Virchows Arch A Pathol Anat Histopathol. 1983;401(1):1-15.

64.      Levander OA, Beck MA. Interacting nutritional and infec-tious etiologies of Keshan disease. Insights from coxsackie virus B-induced myocarditis in mice deficient in selenium or vitamin E. Biol Trace Elem Res. 1997;56(1):5-21.

65.      Gomez RM, Berria MI, Levander OA. Host selenium status selectively influences susceptibility to experimental viral myocarditis. Biol Trace Elem Res. 2001;80(1):23-31.

66.      Fang LQ, Goeijenbier M, Zuo SQ, Wang LP, Liang S, Klein SL, et al. The association between hantavirus infection and selenium deficiency in mainland China. Viruses. 2015;7(1): 333-51.

67.      Chen J, Colin C, Li J, Peto R. Diet, lifestyle, and mortality in China: a study of the characteristics of 65 Chinese counties. Oxford, UK: Oxford University Press.; 1990.

68.      Zhang F, Fu Z. [Association of dietary selenium and cancer mortality in 65 counties of China: a structural equation model analysis]. Chin J Prev Med. 1993;1993(4):245-7.

69.      Zhang J, Taylor E, Bennett K, Saad R, Rayman M. Association between regional selenium status and reported outcome of COVID-19 cases in China. The American Journal of Clinical Nutrition. 2020;111(6):1297-9.

70.      Moghaddam A, Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, et al. Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7).

71.      Fakhrolmobasheri M, Nasr-Esfahany Z, Khanahmad H, Zeinalian M. Selenium supplementation can relieve the clinical complications of COVID-19 and other similar viral infections. Int J Vitam Nutr Res. 2020:1-3.

72.      Bermano G, Meplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2020:1-37.

73.      Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878.

74.      Prasad AS. Zinc deficiency. BMJ (Clinical research ed). 2003;326(7386):409-10.

75.      Prasad AS, Bao B, Beck FW, Sarkar FH. Zinc activates NF-kappaB in HUT-78 cells. J Lab Clin Med. 2001;138(4):250-6.

76.      Baeuerle P, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988;242 (4878): 540-6.

77.      Prasad AS. Effects of Zinc Deficiency on Th1 and Th2 Cytokine Shifts. The Journal of Infectious Diseases. 2000; 182(Supplement_1):S62-S8.

78.      Prasad AS, Beck FW, Bao B, Snell D, Fitzgerald JT. Duration and severity of symptoms and levels of plasma interleukin-1 receptor antagonist, soluble tumor necrosis factor rece-ptor, and adhesion molecules in patients with common cold treated with zinc acetate. J Infect Dis. 2008;197(6):795-802.

79.      de Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN. 2020;38:65-6.

80.      Mayor-Ibarguren A, Busca-Arenzana C, Robles-Marhuenda A. A Hypothesis for the Possible Role of Zinc in the Immunological Pathways Related to COVID-19 Infection. Front Immunol. 2020;11:1736.

81.      Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnes Res. 2020.

82.      Wallace TC. Combating COVID-19 and Building Immune Resilience: A Potential Role for Magnesium Nutrition? J Am Coll Nutr. 2020:1-9.

83.      Aasi A, Aghaei SM, Moore MD, Panchapakesan B. Pt-, Rh-, Ru-, and Cu-Single-Wall Carbon Nanotubes Are Exceptional Candidates for Design of Anti-Viral Surfaces: A Theoretical Study. Int J Mol Sci. 2020;21(15).

84.      Chowdhury T, Roymahapatra G, Mandal SM. In Silico Identification of a Potent Arsenic Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase (RdRp) and Essential Pro-teases. Infect Disord Drug Targets. 2020. doi: 10.2174/1871526520666200727153643

85.      Raffetin A, Bruneel F, Roussel C, Thellier M, Buffet P, Caumes E, et al. Use of artesunate in non-malarial indications. Médecine et Maladies Infectieuses. 2018;48(4):238-49.

86.      Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017;46:65-83.

87.      Zhang YX, Sun HX. Immunosuppressive effect of ethanol extract of Artemisia annua on specific antibody and cellular responses of mice against ovalbumin. Immunopharmacol Immunotoxicol. 2009;31(4):625-30.

88.      Alesaeidi S, Miraj S. A Systematic Review of Anti-malarial Properties, Immunosuppressive Properties, Anti-inflam-matory Properties, and Anti-cancer Properties of Artemisia Annua. Electron Physician. 2016;8(10):3150-5.

89.      Han J, Ye M, Qiao X, Xu M, Wang BR, Guo DA. Characteri-zation of phenolic compounds in the Chinese herbal drug Artemisia annua by liquid chromatography coupled to electrospray ionization mass spectrometry. J Pharm Biomed Anal. 2008;47(3):516-25.

90.      Karamoddini M, Emami SA, Sabouri Ghannad M, Sani E, D A. Amirhossein S. Antiviral Activities of aerial subsets of Artemisia species against Herpes Simplex virus typel (HSV1) in vitro. Asian biomedicine. 2011;5:63-8.

91.      Seo DJ, Lee M, Jeon SB, Park H, Jeong S, Lee B-H, et al. Antiviral activity of herbal extracts against the hepatitis A virus. Food Control. 2017;72:9-13.

92.      Paeshuyse J, Coelmont L, Vliegen I, Vandenkerckhove J, Peys E, Sas B, et al. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin. Biochemical and biophysical research communications. 2006;348(1): 139-44.

93.      Oguariri RM, Adelsberger JW, Baseler MW, Imamichi T. Evaluation of the effect of pyrimethamine, an anti-malarial drug, on HIV-1 replication. Virus research. 2010;153(2): 269-76.

94.      D'Alessandro S, Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, et al. The Use of Antimalarial Drugs against Viral Infection. Microorganisms. 2020;8(1).

95.      Sehailia M, Chemat S. Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. J Biomol Struct Dyn. 2020:1-11.

96.      Sudeep HV, Gouthamchandra K, Shyamprasad K. Molecular docking analysis of Withaferin A from Withania somnifera with the Glucose regulated protein 78 (GRP78) receptor and the SARS-CoV-2 main protease. Bioinformation. 2020;16(5): 411-7.

97.      Ibrahim IM, Abdelmalek DH, Elfiky AA. GRP78: A cell's response to stress. Life Sci. 2019;226:156-63.

98.      Yan SC, Li YJ, Wang YJ, Cai WY, Weng XG, Li Q, et al. [Research progress of effect of artemisinin family drugs on T lym-phocytes immunomodulation]. Zhongguo Zhong Yao Za Zhi. 2019;44(22):4992-9.

99.      Yao W, Wang F, Wang H. Immunomodulation of artemisinin and its derivatives. Science Bulletin. 2016;61(18):1399-406.

100.  Bai L, Li J, Li H, Song J, Zhou Y, Lu R, et al. Renoprotective effects of artemisinin and hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB signa-ling and NLRP3 inflammasome activation by exosomes in rats. Biochemical Pharmacology. 2019;169:113619.

101.  Srivastava S, Saksena AK, Khattri S, Kumar S, Dagur RS. Curcuma longa extract reduces inflammatory and oxidative stress biomarkers in osteoarthritis of knee: a four-month, double-blind, randomized, placebo-controlled trial. Inflam-mopharmacology. 2016;24(6):377-88.

102.  Sharma A, Goyal S, Yadav AK, Kumar P, Gupta L. In-silico screening of plant-derived antivirals against main protease, 3CL(pro) and endoribonuclease, NSP15 proteins of SARS-CoV-2. J Biomol Struct Dyn. 2020:1-15.

103.  Hassaniazad M, Inchehsablagh BR, Kamali H, Tousi A, Eftekhar E, Jaafari MR, et al. The clinical effect of Nano micelles containing curcumin as a therapeutic supplement in patients with COVID-19 and the immune responses balance changes following treatment: A structured sum-mary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):876.

104.  Cardwell G, Bornman JF, James AP, Black LJ. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients. 2018;10(10).

105.  Khan MA, Tania M, Liu R, Rahman MM. Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med. 2013;10.

106.  Shahzad F, Anderson D, Najafzadeh M. The Antiviral, Anti-Inflammatory Effects of Natural Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients. 2020; 12(9).

107.  Hetland G, Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand J Immunol. 2020: e12937.

108.  Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res. 2016;424:30-41.

109.  Perussia B. The Cytokine Profile of Resting and Activated NK Cells. Methods. 1996;9(2):370-8.

110.  Ghazarian L, Simoni Y, Magalhaes I, Lehuen A. Invariant NKT cell development: focus on NOD mice. Curr Opin Immunol. 2014;27:83-8.

111.  Munoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic Determinants of gammadelta T Cell Differentiation. Trends Immunol. 2017;38(5):336-44.

112.  Di Pierro F, Bertuccioli A, Cavecchia I. Possible therapeutic role of a highly standardized mixture of active compounds derived from cultured Lentinula edodes mycelia (AHCC) in patients infected with 2019 novel coronavirus. Minerva Gastroenterol Dietol. 2020.

113.  Murphy EJ, Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, et al. beta-Glucan extracts from the same edible shiitake mushroom Lentinus edodes produce differential in-vitro immunomodulatory and pulmonary cytoprotective effects - Implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 2020;732:139330.

114.  Pazyar N, Feily A. Garlic in dermatology. Dermatol Reports. 2011;3(1):e4.

115.  Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Thi Phuong Loan H, et al. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega. 2020;5 (14):8312-20.

116.  Sarma DN, Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, et al. Safety of green tea extracts : a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469-84.

117.  Khan M, Khan M, Khan Z, Ahamad T, Ansari W. Identification of Dietary Molecules as Therapeutic Agents to Combat COVID-19 Using Molecular Docking Studies. Research Square; 2020. p. https://doi.org/10.21203/rs.3.rs-19560/v1.

118.  Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci. 2020;21(14).

119.  Haggag YA, El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med Hypotheses. 2020;144:109957.

120.  Allam L, Ghrifi F, Mohammed H, El Hafidi N, El Jaoudi R, El Harti J, et al. Targeting the GRP78-Dependant SARS-CoV-2 Cell Entry by Peptides and Small Molecules. Bioinform Biol Insights. 2020;14:1177932220965505.

121.  Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn. 2020:1-10.

122.  Bang B, Park B, Kwon B, Lee D, Jang M, Park S, et al. BST-104, a Water Extract of Lonicera japonica, Has a Gastroprotective Effect via Antioxidant and Anti-Inflammatory Activities. Journal of Medicinal Food. 2019;22(2):140-51.

123.  Yu R, Chen L, Lan R, Shen R, Li P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) corona-virus by molecular docking. Int J Antimicrob Agents. 2020; 56(2):106012.

124.  Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22(1):107-26.

125.  Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25(1):39-49.

126.  Li X, Huang Y, Sun M, Ji H, Dou H, Hu J, et al. Honeysuckle-encoded microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene. Antiviral Res. 2018;152:117-23.

127.  Huang Y, Liu H, Sun X, Ding M, Tao G, Li X. Honeysuckle-derived microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62 gene. J Neurovirol. 2019;25(4):457-63.

128.  Zhou L, Zhou Z, Jiang X, Zheng Y, Chen X, Fu Z, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discovery. 2020;6(1):54.

129.  Arts IC, Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81(1 Suppl):317S-25S.

130.  Heneman K, Zidenberg-Cherr S. Nutrition and Health Information Sheet: Phytochemicals. In: Division of Agriculture and Natureal Resource UoC, editor. https://anrcatalogucanredu/pdf/8313pdf2008.

131.  Man MQ, Yang B, Elias PM. Benefits of Hesperidin for Cutaneous Functions. Evid Based Complement Alternat Med. 2019;2019:2676307.

132.  Homayouni F, Haidari F, Hedayati M, Zakerkish M, Ahmadi K. Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phytother Res. 2018;32(6):1073-9.

133.  Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020.

134.  Mahdian S, Ebrahim-Habibi A, Zarrabi M. Drug repurposing using computational methods to identify therapeutic options for COVID-19. J Diabetes Metab Disord. 2020:1-9.

135.  Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep. 2020;10(1):17699.

136.  Balmeh N, Mahmoudi S, Mohammadi N, Karabedianhajiabadi A. Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform Med Unlocked. 2020;20:100407.

137.  Xiao S, Liu W, Bi J, Liu S, Zhao H, Gong N, et al. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. J Inflamm (Lond). 2018;15:14.

138.  Pinho-Ribeiro FA, Hohmann MS, Borghi SM, Zarpelon AC, Guazelli CF, Manchope MF, et al. Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-kappaB. Chem Biol Interact. 2015;228:88-99.

139.  Dong C, Davis RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol. 2002;20:55-72.

140.  Dong W, Wei X, Zhang F, Hao J, Huang F, Zhang C, et al. A dual character of flavonoids in influenza A virus replication and spread through modulating cell-autonomous immunity by MAPK signaling pathways. Sci Rep. 2014;4:7237.

141.  Mikkelsen SS, Jensen SB, Chiliveru S, Melchjorsen J, Julkunen I, Gaestel M, et al. RIG-I-mediated activation of p38 MAPK is essential for viral induction of interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J Biol Chem. 2009;284(16):10774-82.

142.  Hui KP, Lee SM, Cheung C-y, Ng IH, Poon LL, Guan Y, et al. Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK. The Journal of Immunology. 2009;182(2):1088-98.

143.  Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O, Rapp UR, et al. Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol. 2001;3(3):301-5.

144.  Huang L, Shi Y, Gong B, Jiang L, Liu X, Yang J, et al. Blood single cell immune profiling reveals the interferon-MAPK pathway mediated adaptive immune response for COVID-19. medRxiv. 2020:2020.03.15.20033472.

145.  Noah TL, Zhang H, Zhou H, Glista-Baker E, Müller L, Bauer RN, et al. Effect of broccoli sprouts on nasal response to live attenuated influenza virus in smokers: a randomized, double-blind study. PLoS One. 2014;9(6):e98671.

146.  Müller L, Meyer M, Bauer RN, Zhou H, Zhang H, Jones S, et al. Effect of Broccoli Sprouts and Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A Randomized, Double-Blind Study. PLoS One. 2016;11(1):e0147742.

147.  He F, Ru X, Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci. 2020;21(13).

148.  Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, et al. Can activation of NRF2 be a strategy against COVID-19? Trends in Pharmacological Sciences. 2020.

149.  Lin CY, Yao CA. Potential Role of Nrf2 Activators with Dual Antiviral and Anti-Inflammatory Properties in the Management of Viral Pneumonia. Infect Drug Resist. 2020;13:1735-41.

150.  Horowitz RI, Freeman PR. Three novel prevention, diagnostic, and treatment options for COVID-19 urgently necessitating controlled randomized trials. Med Hypotheses. 2020;143:109851.

151.  Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, et al. Cabbage and fermented vegetables: from death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy. 2020.

152.  The National Health Commission. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin Med J (Engl). 2020;133(9):1087-95.