Review
Natural Products and Potential Therapeutic Intervention for
COVID-19
Fengyu Zhang
March 15, 2021
DOI:10.36316/gcatr.03.0040
ABSTRACT
The coronavirus disease 19 (COVID-19)
caused pandemic is still prevailing, but few approved medications are
available. While the vaccinations have begun in some areas, it is of concern
how the virus mutations will affect the vaccine effectiveness in populations.
Various natural products exhibit good pharmacological properties of antiviral,
antioxidant, and anti-inflammatory activities that may offer preventive
intervention benefits. In addition to that, adequate essential minerals and
trace elements (e.g., selenium and zinc) are required for healthy immune
function; many natural products from prokaryotic and eukaryotic organisms can
be potential drug targets. Among them are plant extracts traditionally used for
antiviral and parasite infections. Two phytochemicals, hesperidin, and
sulforaphane might be the most promising candidates for effective prophylaxis and mitigating disease severity. Therefore, they
deserve a further study of their antiviral mechanisms of action then move to
randomized clinical trials to determine appropriate dosing, pharmacokinetic
parameters, and their potential efficacy and safety in humans.
KEYWORDS
Natural products, plant extracts, phytochemicals, COVID-19
Copyright©2021 by Global Clinical and
Translational Research.
How to cite this article:
Zhang
F. Natural products and potential therapeutic interceptions for COVID-19. Glob
Clin Transl Res. 2020; 3 (1): 7-20.
DOI:10.36316/gcatr.03.0040.
1.
Zhang F,
Walters M. Pathogen genomics and host cellular susceptability factors of
COVID-19. Glob Clin Transl Res. 2020;2(4):107-26.
2.
Santos J, Brierley S, Gandhi MJ, Cohen MA,
Moschella PC, Declan ABL. Repurposing Therapeutics for Potential Treatment of
SARS-CoV-2: A Review. Viruses. 2020;12(7).
3.
Rochwerg B, Agarwal A, Zeng L, Leo YS, Appiah JA,
Agoritsas T, et al. Remdesivir for severe covid-19: a clinical practice
guideline. BMJ. 2020;370:m2924.
4.
Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al.
Remdesivir in adults with severe COVID-19: a randomised, double-blind,
placebo-controlled, multicentre trial. Lancet. 2020; 39 5(10236):1569-78.
5.
Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP,
Veiga VC, Avezum A, et al. Hydroxychloroquine with or without Azith-romycin in
Mild-to-Moderate Covid-19. N Engl J Med. 2020.
6.
Chorin E, Dai M, Shulman E, Wadhwani L,
Roi-Bar-Cohen, Barbhaiya C, et al. The QT Interval in Patients with SARS-CoV-2
Infection Treated with Hydroxychloroquine /Azith-romycin. medRxiv. 2020:2020.04.02.20047050.
7.
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al.
A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N
Engl J Med. 2020.
8.
Boozari M, Hosseinzadeh H. Natural products for
COVID-19 prevention and treatment regarding to previous corona-virus infections
and novel studies. Phytother Res. 2020.
9.
Paulpandi M, Kavithaa K, Asaikkutty A, Balachandar
V, Ayyadurai N, Arul N. Could host cell receptor alteration prevent SARS-CoV-2
viral entry? - Hype or hope. Eur Rev Med Pharmacol Sci. 2020;24(8):4554-7.
10. Elfiky AA.
Natural products may interfere with SARS-CoV-2 attachment to the host cell. J
Biomol Struct Dyn. 2020:1-10.
11. Huang J, Tao G,
Liu J, Cai J, Huang Z, Chen JX. Current Prevention of COVID-19: Natural
Products and Herbal Medicine. Front Pharmacol. 2020;11:588508.
12. Keusch GT,
McAdam KPWJ. Clinical trials during epidemics. The Lancet.
2017;389(10088):2455-7.
13. Dean NE, Gsell
P-S, Brookmeyer R, Crawford FW, Donnelly CA, Ellenberg SS, et al. Creating a
Framework for Conducting Randomized Clinical Trials during Disease Outbreaks.
New England Journal of Medicine. 2020;382(14):1366-9.
14. Che C-T, Zhang
H. Plant Natural Products for Human Health. International journal of molecular
sciences. 2019;20(4):830.
15. Yoo S, Kim K,
Nam H, Lee D. Discovering Health Benefits of Phytochemicals with Integrated
Analysis of the Molecular Network, Chemical Properties and Ethnopharmacological
Evidence. Nutrients. 2018;10(8).
16. Kang YR, Choi
HY, Lee JY, Jang SI, Kang H, Oh JB, et al. Calorie Restriction Effect of
Heat-Processed Onion Extract (ONI) Using In Vitro and In Vivo Animal Models.
Int J Mol Sci. 2018;19(3).
17. Li M, Xu T,
Zhou F, Wang M, Song H, Xiao X, et al. Neuro-protective Effects of Four
Phenylethanoid Glycosides on H₂O₂-Induced Apoptosis on PC12 Cells via the Nrf2/ARE
Pathway. Int J Mol Sci. 2018;19(4).
18. Gugliandolo A,
Pollastro F, Grassi G, Bramanti P, Mazzon E. In Vitro Model of
Neuroinflammation: Efficacy of Cannabi-gerol, a Non-Psychoactive Cannabinoid.
Int J Mol Sci. 2018; 19(7).
19. Forrestall KL,
Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as
inhibitors of SARS-CoV-2 main protease. Chem Biol Interact. 2021;335:109348.
20. Gentile D,
Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A. Putative Inhibitors
of SARS-CoV-2 Main Pro-tease from A Library of Marine Natural Products: A
Virtual Screening and Molecular Modeling Study. Mar Drugs. 2020; 18(4).
21. Narkhede RR,
Pise AV, Cheke RS, Shinde SD. Recognition of Natural Products as Potential
Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Nat Prod
Bioprospect. 2020.
22. Sayed AM,
Alhadrami HA, El-Gendy AO, Shamikh YI, Belbahri L, Hassan HM, et al. Microbial
Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (M(pro)).
Microorganisms. 2020;8(7).
23. Boozari M,
Hosseinzadeh H. Natural products for COVID-19 prevention and treatment
regarding to previous corona-virus infections and novel studies. Phytotherapy
Research. 2021;35(2):864-76.
24. Christy MP,
Uekusa Y, Gerwick L, Gerwick WH. Natural Products with Potential to Treat RNA
Virus Pathogens Including SARS-CoV-2. J Nat Prod. 2021;84(1):161-82.
25. Williamson G,
Kerimi A. Testing of natural products in clinical trials targeting the
SARS-CoV-2 (Covid-19) Viral Spike Protein-Angiotensin Converting Enzyme-2
(ACE2) interaction. Biochem Pharmacol. 2020:114123.
26. Chikhale RV,
Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of
potential anti-TMPRSS2 natural products through homology modelling, virtual
screening and molecular dynamics simulation studies. J Biomol Struct Dyn.
2020:1-16.
27. Rahman N,
Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual Screening of
Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the
Priming Agent of Coronavirus 2 (SARS-CoV-2). Molecules. 2020; 25(10).
28. Gasmi A,
Chirumbolo S, Peana M, Noor S, Menzel A, Dadar M, et al. The Role of Diet and
Supplementation of Natural Products in COVID-19 Prevention. Biol Trace Elem
Res. 2021.
https://doi:10.1007/s12011-021-02623-3
29. Young TK,
Zampella JG. Supplements for COVID-19: A modifiable environmental risk. Clin
Immunol. 2020;216: 108465.
30. Omran HM, Almaliki
MS. Influence of NAD+ as an ageing-related immunomodulator on COVID 19
infection: A hypothesis. Journal of Infection and Public Health. 2020;13
(9):1196-201.
31. Kodis EJ,
Smindak RJ, Kefauver JM, Heffner DL, Aschenbach KL, Brennan ER, et al. First Messengers. eLS, Wiley Online Library 2012
https://doi.org/101002/9780470015902a0024167.
32. Williams DH,
Stone MJ, Hauck PR, Rahman SK. Why are secondary metabolites (natural products)
biosynthesized? J Nat Prod. 1989;52(6):1189-208.
33. Karlson P,
LÜScher M. ‘Pheromones’: a New Term for a Class of Biologically Active
Substances. Nature. 1959;183(4653): 55-6.
34. Surette MG,
Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella
typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer
production. Proc Natl Acad Sci U S A. 1999;96(4):1639-44.
35. Joyce EA,
Bassler BL, Wright A. Evidence for a signaling system in Helicobacter pylori:
detection of a luxS-encoded autoinducer. J Bacteriol. 2000;182(13):3638-43.
36. Kohl JV,
Atzmueller M, Fink B, Grammer K. Human pheromones: integrating
neuroendocrinology and ethology. Neuro Endocrinol Lett. 2001;22(5):309-21.
37. Dickerson E.
Alkaloids. J Natl Med Assoc. 1913;5(3):157-8.
38. Mohammed A,
Haroun K, Mohamed E. Natural Alkaloids and Diabetes Mellitus: A Review.
Endocrine, Metabolic & Immune Disorders - Drug Targets. 2021;21(1):111-30.
39. Jaeger R, Cuny
E. Terpenoids with Special Pharmacological Significance: A Review. Nat Prod
Commun. 2016; 11(9): 1373-90.
40. Bohlmann J,
Keeling CI. Terpenoid biomaterials. Plant J. 2008;54(4):656-69.
41. Huang M, Lu JJ,
Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer
therapy. Expert Opin Investig Drugs. 2012;21(12):1801-18.
42. Shen B.
Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms.
Current Opinion in Chemical Biology. 2003;7:275-95.
43. Dixon RA,
Achnine L, Kota P, Liu CJ, Reddy MS, Wang L. The phenylpropanoid pathway and
plant defence-a genomics perspective. Mol Plant Pathol. 2002;3(5):371-90.
44. Teymoori-Rad M,
Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral
infections. Rev Med Virol. 2019;29(2):e2032.
45. Xiao D, Li X,
Su X, Mu D, Qu Y. Could SARS-CoV-2-induced lung injury be attenuated by vitamin
D? International Journal of Infectious Diseases. 2021;102:196-202.
46. Barros J,
Serrani-Yarce JC, Chen F, Baxter D, Venables BJ, Dixon RA. Role of bifunctional
ammonia-lyase in grass cell wall biosynthesis. Nat Plants. 2016;2(6):16050.
47. Li B, Wang Z,
Li S, Donelan W, Wang X, Cui T, et al. Prepa-ration of lactose-free pasteurized
milk with a recom-binant thermostable β-glucosidase from Pyrococcus furiosus.
BMC Biotechnol. 2013;13:73.
48. Goodman C.
Natural products at the Hans Knöll Institute. Nature Chemical Biology.
2007;3(7):367-.
49. Stop neglecting
fungi. Nature Microbiology. 2017;2(8): 17120.
50. Fisher MC,
Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to
antifungal drugs challenges human health and food security. Science. 2018;360
(6390): 739-42.
51. Kasozi KI,
Niedbała G, Alqarni M, Zirintunda G, Ssempijja F, Musinguzi SP, et al. Bee
Venom-A Potential Complementary Medicine Candidate for SARS-CoV-2 Infections.
Front Public Health. 2020;8:594458.
52. Gouda AS,
Megarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising
therapy for COVID-19? Drug Dev Res. 2020.
53. Facchini PJ.
ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular
Regulation, and Metabolic Engineering Applications. Annual Review of Plant
Physiology and Plant Molecular Biology. 2001;52(1):29-66.
54. Facchini PJ.
ALKALOID BIOSYNTHESIS IN PLANTS: Biochemistry, Cell Biology, Molecular
Regulation, and Metabolic Engineering Applications. Annu Rev Plant Physiol
Plant Mol Biol. 2001;52:29-66.
55. Kuzuyama T.
Biosynthetic studies on terpenoids produced by Streptomyces. The Journal of Antibiotics.
2017;70(7): 811-8.
56. Goldstein J,
Brown M. Regulation of the mevalonate pathway. Nature. 1990;343(6257):425-30. https://doi.org/10.1038/343425a0.
57. Vogt T. Phenylpropanoid
Biosynthesis. Molecular Plant. 2010;3(1):2-20.
58. Naoumkina MA,
Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of
phenylpropanoid defence pathways. Mol Plant Pathol. 2010;11(6):829-46.
59. Ramos SJ,
Dinali GS, Oliveira C, Martins GC, Moreira CG, Siqueira JO, et al. Rare Earth
Elements in the Soil Environ-ment. Current Pollution Reports. 2016;2(1):28-50.
60. Mleczek P,
Borowiak K, Budka A, Niedzielski P. Relationship between concentration of rare
earth elements in soil and their distribution in plants growing near a
frequented road. Environ Sci Pollut Res Int. 2018;25(24):23695-711.
61. WHO. Trace
elements in human nutrition and health. World Health Organization; 1996.
62. Chen J. An
original discovery: selenium deficiency and Keshan disease (an endemic heart
disease). Asia Pac J Clin Nutr. 2012;21(3):320-6.
63. Ge K, Xue A,
Bai J, Wang S. Keshan disease-an endemic cardiomyopathy in China. Virchows Arch
A Pathol Anat Histopathol. 1983;401(1):1-15.
64. Levander OA,
Beck MA. Interacting nutritional and infec-tious etiologies of Keshan disease.
Insights from coxsackie virus B-induced myocarditis in mice deficient in
selenium or vitamin E. Biol Trace Elem Res. 1997;56(1):5-21.
65. Gomez RM,
Berria MI, Levander OA. Host selenium status selectively influences
susceptibility to experimental viral myocarditis. Biol Trace Elem Res.
2001;80(1):23-31.
66. Fang LQ,
Goeijenbier M, Zuo SQ, Wang LP, Liang S, Klein SL, et al. The association
between hantavirus infection and selenium deficiency in mainland China. Viruses.
2015;7(1): 333-51.
67. Chen J, Colin
C, Li J, Peto R. Diet, lifestyle, and mortality in China: a study of the
characteristics of 65 Chinese counties. Oxford, UK: Oxford University Press.;
1990.
68. Zhang F, Fu Z.
[Association of dietary selenium and cancer mortality in 65 counties of China:
a structural equation model analysis]. Chin J Prev Med. 1993;1993(4):245-7.
69. Zhang J, Taylor
E, Bennett K, Saad R, Rayman M. Association between regional selenium status
and reported outcome of COVID-19 cases in China. The American Journal of
Clinical Nutrition. 2020;111(6):1297-9.
70. Moghaddam A,
Heller RA, Sun Q, Seelig J, Cherkezov A, Seibert L, et al. Selenium Deficiency
Is Associated with Mortality Risk from COVID-19. Nutrients. 2020;12(7).
71. Fakhrolmobasheri
M, Nasr-Esfahany Z, Khanahmad H, Zeinalian M. Selenium supplementation can
relieve the clinical complications of COVID-19 and other similar viral
infections. Int J Vitam Nutr Res. 2020:1-3.
72. Bermano G,
Meplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons
for COVID-19? Br J Nutr. 2020:1-37.
73. Kieliszek M,
Lipinski B. Selenium supplementation in the prevention of coronavirus
infections (COVID-19). Med Hypotheses. 2020;143:109878.
74. Prasad AS. Zinc
deficiency. BMJ (Clinical research ed). 2003;326(7386):409-10.
75. Prasad AS, Bao
B, Beck FW, Sarkar FH. Zinc activates NF-kappaB in HUT-78 cells. J Lab Clin
Med. 2001;138(4):250-6.
76. Baeuerle P,
Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription
factor. Science. 1988;242 (4878): 540-6.
77. Prasad AS.
Effects of Zinc Deficiency on Th1 and Th2 Cytokine Shifts. The Journal of
Infectious Diseases. 2000; 182(Supplement_1):S62-S8.
78. Prasad AS, Beck
FW, Bao B, Snell D, Fitzgerald JT. Duration and severity of symptoms and levels
of plasma interleukin-1 receptor antagonist, soluble tumor necrosis factor
rece-ptor, and adhesion molecules in patients with common cold treated with
zinc acetate. J Infect Dis. 2008;197(6):795-802.
79. de Almeida
Brasiel PG. The key role of zinc in elderly immunity: A possible approach in
the COVID-19 crisis. Clin Nutr ESPEN. 2020;38:65-6.
80. Mayor-Ibarguren
A, Busca-Arenzana C, Robles-Marhuenda A. A Hypothesis for the Possible Role of
Zinc in the Immunological Pathways Related to COVID-19 Infection. Front
Immunol. 2020;11:1736.
81. Iotti S, Wolf
F, Mazur A, Maier JA. The COVID-19 pandemic: is there a role for magnesium?
Hypotheses and perspectives. Magnes Res. 2020.
82. Wallace TC.
Combating COVID-19 and Building Immune Resilience: A Potential Role for
Magnesium Nutrition? J Am Coll Nutr. 2020:1-9.
83. Aasi A, Aghaei
SM, Moore MD, Panchapakesan B. Pt-, Rh-, Ru-, and Cu-Single-Wall Carbon
Nanotubes Are Exceptional Candidates for Design of Anti-Viral Surfaces: A
Theoretical Study. Int J Mol Sci. 2020;21(15).
84. Chowdhury T, Roymahapatra
G, Mandal SM. In Silico Identification of a Potent Arsenic Based Approved Drug
Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase
(RdRp) and Essential Pro-teases. Infect Disord Drug Targets. 2020. doi: 10.2174/1871526520666200727153643
85. Raffetin A,
Bruneel F, Roussel C, Thellier M, Buffet P, Caumes E, et al. Use of artesunate
in non-malarial indications. Médecine et Maladies Infectieuses.
2018;48(4):238-49.
86. Efferth T. From
ancient herb to modern drug: Artemisia annua and artemisinin for cancer
therapy. Semin Cancer Biol. 2017;46:65-83.
87. Zhang YX, Sun
HX. Immunosuppressive effect of ethanol extract of Artemisia annua on specific
antibody and cellular responses of mice against ovalbumin. Immunopharmacol
Immunotoxicol. 2009;31(4):625-30.
88. Alesaeidi S,
Miraj S. A Systematic Review of Anti-malarial Properties, Immunosuppressive
Properties, Anti-inflam-matory Properties, and Anti-cancer Properties of
Artemisia Annua. Electron Physician. 2016;8(10):3150-5.
89. Han J, Ye M,
Qiao X, Xu M, Wang BR, Guo DA. Characteri-zation of phenolic compounds in the
Chinese herbal drug Artemisia annua by liquid chromatography coupled to
electrospray ionization mass spectrometry. J Pharm Biomed Anal.
2008;47(3):516-25.
90. Karamoddini M,
Emami SA, Sabouri Ghannad M, Sani E, D A. Amirhossein S. Antiviral Activities
of aerial subsets of Artemisia species against Herpes Simplex virus typel
(HSV1) in vitro. Asian biomedicine. 2011;5:63-8.
91. Seo DJ, Lee M,
Jeon SB, Park H, Jeong S, Lee B-H, et al. Antiviral activity of herbal extracts
against the hepatitis A virus. Food Control. 2017;72:9-13.
92. Paeshuyse J,
Coelmont L, Vliegen I, Vandenkerckhove J, Peys E, Sas B, et al. Hemin
potentiates the anti-hepatitis C virus activity of the antimalarial drug
artemisinin. Biochemical and biophysical research communications. 2006;348(1):
139-44.
93. Oguariri RM,
Adelsberger JW, Baseler MW, Imamichi T. Evaluation of the effect of
pyrimethamine, an anti-malarial drug, on HIV-1 replication. Virus research.
2010;153(2): 269-76.
94. D'Alessandro S,
Scaccabarozzi D, Signorini L, Perego F, Ilboudo DP, Ferrante P, et al. The Use
of Antimalarial Drugs against Viral Infection. Microorganisms. 2020;8(1).
95. Sehailia M,
Chemat S. Antimalarial-agent artemisinin and derivatives portray more potent
binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than
hydroxychloroquine: potential repurposing of artenimol for COVID-19. J Biomol
Struct Dyn. 2020:1-11.
96. Sudeep HV,
Gouthamchandra K, Shyamprasad K. Molecular docking analysis of Withaferin A from
Withania somnifera with the Glucose regulated protein 78 (GRP78) receptor and
the SARS-CoV-2 main protease. Bioinformation. 2020;16(5): 411-7.
97. Ibrahim IM,
Abdelmalek DH, Elfiky AA. GRP78: A cell's response to stress. Life Sci.
2019;226:156-63.
98. Yan SC, Li YJ,
Wang YJ, Cai WY, Weng XG, Li Q, et al. [Research progress of effect of
artemisinin family drugs on T lym-phocytes immunomodulation]. Zhongguo Zhong
Yao Za Zhi. 2019;44(22):4992-9.
99. Yao W, Wang F,
Wang H. Immunomodulation of artemisinin and its derivatives. Science Bulletin.
2016;61(18):1399-406.
100. Bai L, Li J, Li
H, Song J, Zhou Y, Lu R, et al. Renoprotective effects of artemisinin and
hydroxychloroquine combination therapy on IgA nephropathy via suppressing NF-κB
signa-ling and NLRP3 inflammasome activation by exosomes in rats. Biochemical
Pharmacology. 2019;169:113619.
101. Srivastava S,
Saksena AK, Khattri S, Kumar S, Dagur RS. Curcuma longa extract reduces
inflammatory and oxidative stress biomarkers in osteoarthritis of knee: a
four-month, double-blind, randomized, placebo-controlled trial.
Inflam-mopharmacology. 2016;24(6):377-88.
102. Sharma A, Goyal
S, Yadav AK, Kumar P, Gupta L. In-silico screening of plant-derived antivirals
against main protease, 3CL(pro) and endoribonuclease, NSP15 proteins of
SARS-CoV-2. J Biomol Struct Dyn. 2020:1-15.
103. Hassaniazad M,
Inchehsablagh BR, Kamali H, Tousi A, Eftekhar E, Jaafari MR, et al. The
clinical effect of Nano micelles containing curcumin as a therapeutic
supplement in patients with COVID-19 and the immune responses balance changes
following treatment: A structured sum-mary of a study protocol for a randomised
controlled trial. Trials. 2020;21(1):876.
104. Cardwell G,
Bornman JF, James AP, Black LJ. A Review of Mushrooms as a Potential Source of
Dietary Vitamin D. Nutrients. 2018;10(10).
105. Khan MA, Tania
M, Liu R, Rahman MM. Hericium erinaceus: an edible mushroom with medicinal
values. J Complement Integr Med. 2013;10.
106. Shahzad F,
Anderson D, Najafzadeh M. The Antiviral, Anti-Inflammatory Effects of Natural
Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients. 2020; 12(9).
107. Hetland G,
Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic
or therapeutic effect against COVID-19 and its pneumonic superinfection and
complicating inflammation? Scand J Immunol. 2020: e12937.
108. Meng X, Liang
H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural
characteristics, antitumor mechanisms and immunomodulating activities.
Carbohydr Res. 2016;424:30-41.
109. Perussia B. The
Cytokine Profile of Resting and Activated NK Cells. Methods. 1996;9(2):370-8.
110. Ghazarian L,
Simoni Y, Magalhaes I, Lehuen A. Invariant NKT cell development: focus on NOD
mice. Curr Opin Immunol. 2014;27:83-8.
111. Munoz-Ruiz M,
Sumaria N, Pennington DJ, Silva-Santos B. Thymic Determinants of gammadelta T
Cell Differentiation. Trends Immunol. 2017;38(5):336-44.
112. Di Pierro F,
Bertuccioli A, Cavecchia I. Possible therapeutic role of a highly standardized mixture
of active compounds derived from cultured Lentinula edodes mycelia (AHCC) in
patients infected with 2019 novel coronavirus. Minerva Gastroenterol Dietol.
2020.
113. Murphy EJ,
Masterson C, Rezoagli E, O'Toole D, Major I, Stack GD, et al. beta-Glucan extracts
from the same edible shiitake mushroom Lentinus edodes produce differential
in-vitro immunomodulatory and pulmonary cytoprotective effects - Implications
for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ.
2020;732:139330.
114. Pazyar N, Feily
A. Garlic in dermatology. Dermatol Reports. 2011;3(1):e4.
115. Thuy BTP, My
TTA, Hai NTT, Hieu LT, Hoa TT, Thi Phuong Loan H, et al. Investigation into
SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega. 2020;5
(14):8312-20.
116. Sarma DN,
Barrett ML, Chavez ML, Gardiner P, Ko R, Mahady GB, et al. Safety of green tea
extracts : a systematic review by the US Pharmacopeia. Drug Saf.
2008;31(6):469-84.
117. Khan M, Khan M,
Khan Z, Ahamad T, Ansari W. Identification of Dietary Molecules as Therapeutic
Agents to Combat COVID-19 Using Molecular Docking Studies. Research Square;
2020. p. https://doi.org/10.21203/rs.3.rs-19560/v1.
118. Menegazzi M,
Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect
of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune
Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol
Sci. 2020;21(14).
119. Haggag YA,
El-Ashmawy NE, Okasha KM. Is hesperidin essential for prophylaxis and treatment
of COVID-19 Infection? Med Hypotheses. 2020;144:109957.
120. Allam L, Ghrifi
F, Mohammed H, El Hafidi N, El Jaoudi R, El Harti J, et al. Targeting the
GRP78-Dependant SARS-CoV-2 Cell Entry by Peptides and Small Molecules.
Bioinform Biol Insights. 2020;14:1177932220965505.
121. Bhardwaj VK,
Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive
molecules from tea plant as SARS-CoV-2 main protease inhibitors. J Biomol
Struct Dyn. 2020:1-10.
122. Bang B, Park B,
Kwon B, Lee D, Jang M, Park S, et al. BST-104, a Water Extract of Lonicera
japonica, Has a Gastroprotective Effect via Antioxidant and Anti-Inflammatory
Activities. Journal of Medicinal Food. 2019;22(2):140-51.
123. Yu R, Chen L,
Lan R, Shen R, Li P. Computational screening of antagonists against the
SARS-CoV-2 (COVID-19) corona-virus by molecular docking. Int J Antimicrob
Agents. 2020; 56(2):106012.
124. Zhang L, Hou D,
Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically
targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA.
Cell Res. 2012;22(1):107-26.
125. Zhou Z, Li X,
Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911
directly targets influenza A viruses. Cell Res. 2015;25(1):39-49.
126. Li X, Huang Y,
Sun M, Ji H, Dou H, Hu J, et al. Honeysuckle-encoded microRNA2911 inhibits
Enterovirus 71 replication via targeting VP1 gene. Antiviral Res.
2018;152:117-23.
127. Huang Y, Liu H,
Sun X, Ding M, Tao G, Li X. Honeysuckle-derived microRNA2911 directly inhibits
varicella-zoster virus replication by targeting IE62 gene. J Neurovirol.
2019;25(4):457-63.
128. Zhou L, Zhou Z,
Jiang X, Zheng Y, Chen X, Fu Z, et al. Absorbed plant MIR2911 in honeysuckle
decoction inhibits SARS-CoV-2 replication and accelerates the negative
conversion of infected patients. Cell Discovery. 2020;6(1):54.
129. Arts IC,
Hollman PC. Polyphenols and disease risk in epidemiologic studies. Am J Clin
Nutr. 2005;81(1 Suppl):317S-25S.
130. Heneman K,
Zidenberg-Cherr S. Nutrition and Health Information Sheet: Phytochemicals. In:
Division of Agriculture and Natureal Resource UoC, editor. https://anrcatalogucanredu/pdf/8313pdf2008.
131. Man MQ, Yang B,
Elias PM. Benefits of Hesperidin for Cutaneous Functions. Evid Based Complement
Alternat Med. 2019;2019:2676307.
132. Homayouni F,
Haidari F, Hedayati M, Zakerkish M, Ahmadi K. Blood pressure lowering and
anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized
double-blind controlled clinical trial. Phytother Res. 2018;32(6):1073-9.
133. Wu C, Liu Y,
Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for
SARS-CoV-2 and discovery of potential drugs by computational methods. Acta
Pharm Sin B. 2020.
134. Mahdian S,
Ebrahim-Habibi A, Zarrabi M. Drug repurposing using computational methods to
identify therapeutic options for COVID-19. J Diabetes Metab Disord. 2020:1-9.
135. Basu A, Sarkar
A, Maulik U. Molecular docking study of potential phytochemicals and their
effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep.
2020;10(1):17699.
136. Balmeh N,
Mahmoudi S, Mohammadi N, Karabedianhajiabadi A. Predicted therapeutic targets
for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform
Med Unlocked. 2020;20:100407.
137. Xiao S, Liu W,
Bi J, Liu S, Zhao H, Gong N, et al. Anti-inflammatory effect of hesperidin
enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue
repair. J Inflamm (Lond). 2018;15:14.
138. Pinho-Ribeiro
FA, Hohmann MS, Borghi SM, Zarpelon AC, Guazelli CF, Manchope MF, et al.
Protective effects of the flavonoid hesperidin methyl chalcone in inflammation
and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-kappaB.
Chem Biol Interact. 2015;228:88-99.
139. Dong C, Davis
RJ, Flavell RA. MAP kinases in the immune response. Annu Rev Immunol.
2002;20:55-72.
140. Dong W, Wei X,
Zhang F, Hao J, Huang F, Zhang C, et al. A dual character of flavonoids in influenza
A virus replication and spread through modulating cell-autonomous immunity by
MAPK signaling pathways. Sci Rep. 2014;4:7237.
141. Mikkelsen SS,
Jensen SB, Chiliveru S, Melchjorsen J, Julkunen I, Gaestel M, et al.
RIG-I-mediated activation of p38 MAPK is essential for viral induction of
interferon and activation of dendritic cells: dependence on TRAF2 and TAK1. J
Biol Chem. 2009;284(16):10774-82.
142. Hui KP, Lee SM,
Cheung C-y, Ng IH, Poon LL, Guan Y, et al. Induction of proinflammatory
cytokines in primary human macrophages by influenza A virus (H5N1) is
selectively regulated by IFN regulatory factor 3 and p38 MAPK. The Journal of
Immunology. 2009;182(2):1088-98.
143. Pleschka S,
Wolff T, Ehrhardt C, Hobom G, Planz O, Rapp UR, et al. Influenza virus
propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade.
Nat Cell Biol. 2001;3(3):301-5.
144. Huang L, Shi Y,
Gong B, Jiang L, Liu X, Yang J, et al. Blood single cell immune profiling
reveals the interferon-MAPK pathway mediated adaptive immune response for
COVID-19. medRxiv. 2020:2020.03.15.20033472.
145. Noah TL, Zhang
H, Zhou H, Glista-Baker E, Müller L, Bauer RN, et al. Effect of broccoli
sprouts on nasal response to live attenuated influenza virus in smokers: a
randomized, double-blind study. PLoS One. 2014;9(6):e98671.
146. Müller L, Meyer
M, Bauer RN, Zhou H, Zhang H, Jones S, et al. Effect of Broccoli Sprouts and
Live Attenuated Influenza Virus on Peripheral Blood Natural Killer Cells: A
Randomized, Double-Blind Study. PLoS One. 2016;11(1):e0147742.
147. He F, Ru X, Wen
T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci.
2020;21(13).
148. Cuadrado A,
Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, et al.
Can activation of NRF2 be a strategy against COVID-19? Trends in Pharmacological
Sciences. 2020.
149. Lin CY, Yao CA.
Potential Role of Nrf2 Activators with Dual Antiviral and Anti-Inflammatory
Properties in the Management of Viral Pneumonia. Infect Drug Resist.
2020;13:1735-41.
150. Horowitz RI,
Freeman PR. Three novel prevention, diagnostic, and treatment options for
COVID-19 urgently necessitating controlled randomized trials. Med Hypotheses.
2020;143:109851.
151. Bousquet J,
Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, et al. Cabbage and
fermented vegetables: from death rate heterogeneity in countries to candidates
for mitigation strategies of severe COVID-19. Allergy. 2020.
152. The National
Health Commission. Diagnosis and Treatment Protocol for Novel Coronavirus
Pneumonia (Trial Version 7). Chin Med J (Engl). 2020;133(9):1087-95.