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ABSTRACT 

Lichen planus (LP) is a chronic inflammatory disease that affects the skin, nails, urogenital tract, and oral mucosa. It ranges 
from mild inflammation to the destruction of the epithelial surface with painful wounds and squamous cell carcinoma 
development. The LP lesion differences in location and morphology determine the clinical disease subtypes which all share 
a histological feature of dense band-like sub-epithelial infiltration of lymphocytes and keratinocyte apoptosis. Despite the 
well-characterized clinical manifestations of LP, its pathogenesis remains mostly unknown. Recent studies revealed a role 
of IFN-γ signaling that renders keratinocytes more susceptible to T-cell-mediated cytotoxicity via upregulation of MHC class 
I molecules. Targeting IFN-γ signaling in LP has been proposed as a treatment option. These latest developments in research 
on the etiology of LP will be discussed herein. 
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Introduction 

Lichen planus (LP) is a chronic mucocutaneous inflam-
matory disease with an estimated prevalence ranging from 
0.22% to 5% of populations worldwide (1). LP lesions 
most commonly present as purplish pruritic papules or 
plaques of flat polygonal shape that range from mild 
inflammation to painful wounds and typically affect 
middle-aged adults of both sexes and all races (2). In 
addition to the classical presentation, variations in the site 
of involvement and morphology of LP lesions give rise to 
various clinical variants, including oral, nail, vulvovaginal, 
hypertrophic, linear, annular, atrophic, inverse, and 
ulcerative, among others (3). Histologically, LP variants 
share a distinctive feature: degeneration of basal layer and 
dense band-like subepithelial lymphocytes infiltrate (1, 4) 
(Figure 1). The damage to basal keratinocytes is thought 
to be caused by autoreactive T cells targeting basal layer 
antigens. However, specific antigens and other character-
istics of the microenvironment that promote this auto-
immune response remain mostly unidentified. There is q 
lack of a clear understanding of molecular disease 
mechanisms, and no FDA-approved treatments are 
currently available for LP. Treatment options are limited to 
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off-label medications, most often topical steroids (5). 
Recent studies have shed light on the role of IFN-γ in the 
etiology of LP that includes priming keratinocytes for T 
cell-mediated cytotoxicity through the induction of MHC I 
on keratinocytes (6), and targeting IFN-γ signaling is being 
considered for novel therapeutics of LP. 

Mechanism of IFN-γ-driven pathogenesis in LP 
keratinocytes 

IFN-γ, the only member of the Type II interferons, initiates 
a cellular response to microbial infections and plays a 
central role in inflammation and autoimmunity (7, 8). IFN-
γ can be produced by leukocytes including T (9) and B (10) 
lymphocytes, natural killer (NK) cell (11), natural killer T 
(NKT) cell (12), dendritic cell (DC) and macrophage (Mɸ) 
( (13), and it even has been suggested to be expressed in 
keratinocytes (14). As such, IFN-γ acts in both autocrine 
(15) and paracrine (16) manner to exert a wide range of 
pro-inflammatory and immunomodulatory effects in 
innate and adaptive immunity. The binding of an active 
IFN-γ homodimer to its receptor, an IFNGR1/ IFNGR2 
heterodimer, activates the JAK-STAT pathway, resulting in 
transcription of numerous genes involved in immune 
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response, inflammation, proliferation, and apoptosis. For 
example, priming with IFN-γ results in “super-activation” 
of macrophages that develop resistance to anti-inflam-
matory stimuli and become more responsive to pro-
inflammatory stimuli (17). IFN-γ enhances motility and 
cytotoxicity of CD8+T cells (18) and regulates the 

expansion, contraction, and memory phases of CD8+T cell 
response (19). Unsurprisingly, dysregulated IFN-γ signal-
ing has been implicated in auto-inflammatory and 
autoimmune diseases (20, 21). Overexpressing IFN-γ in 
the epidermis causes an inflammatory skin disease 
resembling cutaneous lupus erythematosus in mice (22). 

 

 
Figure 1. Common histological features in various clinical manifestations of LP. 
A broad range of clinical manifestations of LP is demonstrated in the clinical photographs of hypertrophic LP (top left), nail LP (top right), 
and oral erosive LP (bottom left). The histology of a typical lymphoid infiltrate in the upper dermis is demonstrated in a case of cutaneous 
LP (bottom right), where the presence of dyskeratosis (apoptosis of the epidermis), saw toothing (the sharp pointy rete ridges), 
hypergranulosis (increased number of cells in the granular layer), and scaling (flakiness and peeling in the outermost epidermis caused by 
excessive cell death) are also evident. 

In keratinocytes, IFN-γ induces expressions of T cell-
recruiting chemokines CXCL9, CXCL10, and CXCL11 that 
are elevated in oral LP (23). Culturing keratinocytes with 
IFN-γ induces synthesis of selected MHC class I (24, 25) 
and MHC class II molecules (26, 27), including HLA-DR 
antigen, which is not expressed in keratinocytes under 
normal conditions but is present in LP (26). IFN-γ also 
upregulates Keratin 6, inflammatory and hyperprolifer-
ative keratin, in keratinocytes (28), primes keratinocytes 
for inflammasome activation (29), suppresses keratino-
cyte proliferation (28, 30), and can induce keratinocyte 
necroptosis (31) and apoptosis under pro-inflammatory 
conditions (32). The multi-faceted action of IFN-γ on the 
activation of keratinocytes in LP (Figure 2) is supported 
by the genetic associations of IFNG polymorphisms with 
oral LP (33, 34). Indeed, recent global transcriptomic 
profiling of LP lesions identified an IFN-γ inflammation 
response as the major pathway of pathogenesis in LP (6). 

LP is associated with a chronic hepatitis C virus (HCV) 
infection, with an average of 22.3% of oral LP patients 
having anti-HCV antibodies (35). The link between the two 
diseases suggests that the IFN-mediated host immune 

response to the viral infection evokes cutaneous inflame-
mation. How-ever, more research is needed to dissect the 
contribution of type I interferons versus IFN-γ in HCV-
associated LP, as IFN-α and IFN-β are also increased in LP 
skin lesions compared to normal skin (6, 36). The in vitro 
priming of keratinocytes with Type I IFNs promotes 
keratinocyte susceptibility to T cell-mediated cytotoxicity 
to a lesser extent than priming with IFN-γ (6). 

In addition to HCV, other viral (37) and bacterial (38) 
infections have been implicated in the etiology of LP. 
Furthermore, immunization against a range of infections 
has been shown to trigger LP, with hepatitis B, influenza, 
and herpes zoster vaccines found to be among the most 
commonly associated types (39). All of these seemingly 
unrelated causes may converge on the IFN-γ signaling. 
However, it is worth noting that the exposure to certain 
metals, pigments, chemicals, or drugs has also been linked 
to LP (1). More research is needed to discern the 
mechanism of the disease in these various conditions. 

MHC molecules in T cell toxicity of LP 
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The main histological feature of LP is the increased accu-
mulation of CD4+ and CD8+ T cells (40) and antigen-
presenting Langerhans cells (41) in the epidermis and 
dermis of LP lesions compared to non-lesional skin. 
Chemokines, secreted by IFN-γ-stimulated keratinocytes, 
including CXCL9 and CXCL10, can attract CXCR3+ CD8+ T 
effector cells in the dermal-epidermal junctional zone of LP 
(42)  where they recognize antigens presented by MHC 
class I positive cells and trigger cell death (43). CD4+T cells 
are also recruited to the site where, upon activation by 
MHC class II, they further activate cytotoxic CD8+ T cells 
(44). Immunofluorescence studies show that MHC class I 
molecules are abundant in the epidermis of LP lesions. In 
contrast, MHC class II molecules are absent in the 
epidermis and instead localized to the upper dermis along 
the epidermal-dermal junction in LP (6). 

Although all primary MHC class I and II molecules are 
expressed higher in LP than normal controls (6) and thus 

may contribute to the LP pathogenesis, only blocking MHC 
class I molecules to limit antigen presentation was shown 
to decrease these cytotoxic responses against lesional 
keratinocytes (40). In vitro co-culture of IFN-γ-primed 
keratinocytes and activated peripheral blood mononuclear 
cell (PBMCs) was shown to upregulate HLA-A, HLA-C, and 
HLA-DR, but not HLA-B, HLA-DP, or HLA-DQ, in kera-
tinocytes (6). When this IFN-γ priming was combined with 
a pan anti-MHC class I blocking antibody, cytotoxic activity 
towards keratinocytes was entirely abolished in vitro. In 
contrast, anti-HLA-DR antibodies only partially inhibited 
the cytotoxicity and anti-HLA-DP or anti-DQ antibodies did 
not have an effect. Interestingly, a variant of HLA-DR, HLA-
DRB1*0101, is associated with predisposition to LP (45). 

In addition to the upregulation of MHC class I molecules, 
IFN-γ also enhances cytotoxicity by inducing the expre-
ssion of IRF1-dependent antigen-processing machinery in 
keratinocytes (46). 

 

Figure 2. IFN-γ signaling renders keratinocytes more susceptible to T-cell-mediated cytotoxicity in LP. 
Macrophages (MΦ), natural killer (NK), and dendritic cells (DC) are some of the cells that produce IFN-γ, which binds to its receptor on 
keratinocytes and initiates JAK/STAT-dependent signaling that causes the upregulation of primarily MHC class I and possibly some 
induction of MHC class II molecules, and in turn, promotes keratinocyte apoptosis/ necroptosis and the release of chemokines. These 
chemokines, including CXCL9, CXCL10, and CXCL11, promote additional Th1/Tc1 cells migrating to the dermal-epidermal junction. 
Cytotoxic CD8+Tc1 cells, the major effector cells in LP, recognize putative self-antigens presented by MHC class I positive keratinocytes 
and are responsible for triggering keratinocyte cell death.  

Targeting JAK/ STAT signaling for treatment 

Identifying novel treatment targets for LP is of utmost 
importance. So far, there are no FDA-approved treatments 
specifically for this condition. The off-label use of systemic 
immuno-suppressants, including glucocorticoids and 
immunomodulators, such as acitretin, have considerable 
side effects. Previously investigated treatments include a) 
mycophenolic acid that preferentially depletes guanosine 
in T and B lymphocytes to inhibit their proliferation and 

suppress cell-mediated cytotoxicity that was shown to 
reduce pain severity and ulcer size of ulcerative oral LP 
(47); b) secukinumab, a monoclonal antibody that blocks 
IL-17A, to target Th17/Tc17 cells, that showed clinical 
amelioration of mucosal and cutaneous LP (48); c) 
etanercept, a TNF blocker, that was used to treat nail LP 
(49); and others (50, 51). However, inadequate sample size, 
insufficient efficacy, such as clinical case reports of 
secukinumab (52) or etanercept (53) inducing LP, might 
be the cause of  inconsistent results. 
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Targeting IFN-γ has recently been proposed as a promising 
treatment option for LP (54) among other inflammatory 
skin diseases (55-57). Because IFN-γ activates JAK/STAT 
intracellular signaling to induce MHCs expression in 
keratinocytes, blocking this signaling cascade may protect 
keratinocytes from cytotoxicity. A comprehensive liter-
ature-based network analysis of most highly connected 
nodes in IFN signaling confirmed the involvement of JAK2 
and STAT1, with the latter being the most highly expressed 
gene among all STAT genes in LP (6). The active, phos-
phorylated form of STAT1 is localized to the epidermis of 
LP lesions, while phosphorylated STAT2 is predominantly 
expressed in the inflammatory infiltrates at the dermal-
epidermal junction (6). When the genes differentially 
expressed in LP were subjected to drug target analysis 
using a word-embedding-based machine learning app-
roach (58), top predicted drugs were JAK inhibitors. Either 
knocking-out JAK2 or STAT1 or chemically inhibiting JAK 
with baricitinib was shown to indeed significantly protect 
IFN-γ-primed keratinocytes from the cell-mediated cyto-
toxic responses by reducing expression of HLA-A/B/C (6). 

Following these promising findings, several studies 
reported successful outcomes after treatment with JAK 
inhibitors: a) three patients with recalcitrant erosive LP, 
who previously failed to respond to treatment with other 
medications, showed dramatic improvement after treat-
ment with tofacitinib, a JAK1/3 inhibitor (59); b) a patient 
with a 30-year history of hypertrophic LP showed a 
notable improvement in all observed parameters after 
treatment with tofacitinib; c) Nine lichen planopilaris 
patients, who had failed other forms of therapy, responded 
positively to tofacitinib, with better clinical outcomes in 
those on systemic rather than topical therapy (60); d) 
Treatment with tofacitinib in a case of typically irrever-
sible lichen planopilaris reduced scalp visibility, led to hair 
regrowth, and eliminated itch (61). It is worth noting that 
tofacitinib is a JAK1/3 inhibitor that also targets JAK2 to a 
lesser extent. More research and clinical data are needed 
to evaluate the relative effectiveness of targeting different 
JAK isoforms as well as other downstream components of 
the IFN-γ signaling for the treatment of LP. 

Thus, the mechanistic research findings narrowing down 
on IFN-γ signaling in the pathophysiology of LP lead to the 
identification of JAK/STAT pathway as a potential treat-
ment target that is now showing promising initial clinical 
results. Several other JAK inhibitors are available and have 
been FDA approved. Some are currently being tested for 
the treatment of numerous autoimmune/autoinflamma-
tory conditions, including rheumatoid arthritis (62), syste-
mic lupus erythematosus (63), psoriasis (64), and others. 

In conclusion, recent research findings identify IFN-γ as a 
master regulator of cytotoxic responses in LP. Initial 
clinical studies support IFN-γ signaling as a novel pro-
mising therapeutic target for LP. 
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