Review
IFN-γ Signaling in Lichen Planus Open Access
Olesya Plazyo, Shuai Shao, Johann E. Gudjonsson
March 3, 2021
ABSTRACT
Lichen planus (LP) is a chronic inflammatory
disease that affects the skin, nails, urogenital tract, and oral mucosa. It ranges from mild inflammation to the destruction
of the epithelial surface with painful wounds and squamous cell carcinoma
development. The LP lesion differences in location and morphology determine the
clinical disease subtypes which all share a histological feature of dense band-like
sub-epithelial infiltration of lymphocytes and keratinocyte apoptosis. Despite
the well-characterized clinical manifestations of LP, its pathogenesis remains
mostly unknown. Recent studies revealed a role of IFN-γ signaling that
renders keratinocytes more susceptible to T-cell-mediated cytotoxicity via
upregulation of MHC class I molecules. Targeting IFN-γ signaling in LP has
been proposed as a treatment option. These latest developments in research on
the etiology of LP will be discussed herein.
KEYWORDS
IFN-Gamma; Lichen planus
Copyright©2021
by the author(s). Licensee Global Clinical and Translational Research.
This is an open-access article distributed under the terms and conditions of
the Creative Commons Attribution License (CCBY4.0, https://creative-commons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium provided
the original work is properly cited.
This article belongs to virtual special issue on
“Translational genetics and epigenetics of immune-related skin diseases” edited
by Qianjin Lu, Ming Zhao, Juan Tao, Liangdan Sun, Hong Liu.
How to cite this article
Plazyo O, Shao S, Gudjonsson JE. IFN-γ
signaling in Lichen Planus. Glob Clin Transl Res. 2021; 3(1):
1-6. DOI:10.36316/gcatr.03.0039.
REFERENCES
1. Ioannides D, Vakirlis E, Kemeny L,
Marinovic B, Massone C, Murphy R, et al. European S1 guidelines on the
management of lichen planus: a cooperation of the European Dermatology Forum
with the European Academy of Dermatology and Venereology. J Eur Acad Dermatol
Venereol. 2020;34(7):1403-14.
2. Shao S, Tsoi LC, Sarkar MK, Xing
X, Xue K, Uppala R, et al. IFN-gamma enhances cell-mediated cytotoxicity
against keratinocytes via JAK2/STAT1 in lichen planus. Sci Transl Med.
2019;11(511).
3. Zhang J. Yin and yang interplay of
IFN-gamma in inflammation and autoimmune disease. J Clin Invest.
2007;117(4):871-3.
4. Hile GA, Gudjonsson JE, Kahlenberg
JM. The influence of interferon on healthy and diseased skin. Cytokine.
2020;132:154605.
5. Kasahara T, Hooks JJ, Dougherty
SF, Oppenheim JJ. Interleukin 2-mediated immune interferon (IFN-gamma)
production by human T cells and T cell subsets. J Immunol. 1983;130(4):1784-9.
6. Bao Y, Liu X, Han C, Xu S, Xie B,
Zhang Q, et al. Identification of IFN-gamma-producing innate B cells. Cell Res.
2014;24(2):161-76.
7. Yu J, Wei M, Becknell B, Trotta R,
Liu S, Boyd Z, et al. Pro- and antiinflammatory cytokine signaling: reciprocal
antagonism regulates interferon-gamma production by human natural killer cells.
Immunity. 2006;24(5):575-90.
8. Moreno M, Molling JW, von
Mensdorff-Pouilly S, Verheijen RH, Hooijberg E, Kramer D, et al.
IFN-gamma-producing human invariant NKT cells promote tumor-associated
antigen-specific cytotoxic T cell responses. J Immunol. 2008;181(4):2446-54.
9. Frucht DM, Fukao T, Bogdan C,
Schindler H, O'Shea JJ, Koyasu S. IFN-gamma production by antigen-presenting
cells: mechanisms emerge. Trends Immunol. 2001;22(10):556-60.
10. Howie SE, Aldridge RD, McVittie E,
Forsey RJ, Sands C, Hunter JA. Epidermal keratinocyte production of
interferon-gamma immunoreactive protein and mRNA is an early event in allergic
contact dermatitis. J Invest Dermatol. 1996;106(6):1218-23.
11. Curtsinger JM, Agarwal P, Lins DC,
Mescher MF. Autocrine IFN-γ promotes naive CD8 T cell differentiation and
synergizes with IFN-α to stimulate strong function. J Immunol.
2012;189(2):659-68.
12. Krummel MF, Mahale JN, Uhl LFK,
Hardison EA, Mujal AM, Mazet JM, et al. Paracrine costimulation of IFN-γ
signaling by integrins modulates CD8 T cell differentiation. Proc Natl Acad Sci
U S A. 2018;115(45):11585-90.
13. Gorouhi F, Davari P, Fazel N.
Cutaneous and mucosal lichen planus: a comprehensive review of clinical
subtypes, risk factors, diagnosis, and prognosis. ScientificWorldJournal. 2014;2014:742826.
14. Kyriakis KP, Terzoudi S, Palamaras
I, Michailides C, Emmanuelidis S, Pagana G. Sex and age distribution of
patients with lichen planus. J Eur Acad Dermatol Venereol. 2006;20(5):625-6.
15. Weston G, Payette M. Update on
lichen planus and its clinical variants. Int J Womens Dermatol.
2015;1(3):140-9.
16. Anitua E, Pinas L, Alkhraisat MH.
Histopathological features of oral lichen planus and its response to
corticosteroid therapy: A retrospective study. Medicine (Baltimore).
2019;98(51):e18321.
17. Ivashkiv LB. IFNγ: signalling,
epigenetics and roles in immunity, metabolism, disease and cancer
immunotherapy. Nat Rev Immunol. 2018;18(9):545-58.
18. Bhat P, Leggatt G, Waterhouse N,
Frazer IH. Interferon-γ derived from cytotoxic lymphocytes directly
enhances their motility and cytotoxicity. Cell Death Dis. 2017;8(6):e2836.
19. Tewari K, Nakayama Y, Suresh M. Role
of direct effects of IFN-gamma on T cells in the regulation of CD8 T cell
homeostasis. J Immunol. 2007;179(4):2115-25.
20. Reinhardt RL, Liang HE, Bao K, Price
AE, Mohrs M, Kelly BL, et al. A novel model for IFN-γ-mediated
autoinflammatory syndromes. J Immunol. 2015;194(5):2358-68.
21. Barrat FJ, Crow MK, Ivashkiv LB.
Interferon target-gene expression and epigenomic signatures in health and
disease. Nat Immunol. 2019;20(12):1574-83.
22. Seery JP. IFN-gamma transgenic mice:
clues to the pathogenesis of systemic lupus erythematosus? Arthritis Res.
2000;2(6):437-40.
23. Marshall A, Celentano A, Cirillo N,
McCullough M, Porter S. Tissue-specific regulation of CXCL9/10/11 chemokines in
keratinocytes: Implications for oral inflammatory disease. PLoS One.
2017;12(3):e0172821.
24. Sikorski M, Bobek M, Zrubek H,
Marcinkiewicz J. Dynamics of selected MHC class I and II molecule expression in
the course of HPV positive CIN treatment with the use of human recombinant
IFN-gamma. Acta Obstet Gynecol Scand. 2004;83(3):299-307.
25. Zhou F, Chen J, Zhao KN. Human
papillomavirus 16-encoded E7 protein inhibits IFN-γ-mediated MHC class I
antigen presentation and CTL-induced lysis by blocking IRF-1 expression in
mouse keratinocytes. J Gen Virol. 2013;94(Pt 11):2504-14.
26. Morhenn VB, Nickoloff BJ, Mansbridge
JN. Induction of the synthesis of triton-soluble proteins in human
keratinocytes by gamma interferon. J Invest Dermatol. 1985;85(1 Suppl):27s-9s.
27. Albanesi C, Cavani A, Girolomoni G.
Interferon-gamma-stimulated human keratinocytes express the genes necessary for
the production of peptide-loaded MHC class II molecules. J Invest Dermatol.
1998;110(2):138-42.
28. Hattori N, Komine M, Yano S, Kaneko
T, Hanakawa Y, Hashimoto K, et al. Interferon-gamma, a strong suppressor of
cell proliferation, induces upregulation of keratin K6, one of the
inflammatory- and proliferation-associated keratins. J Invest Dermatol.
2002;119(2):403-10.
29. Strittmatter GE, Sand J, Sauter M,
Seyffert M, Steigerwald R, Fraefel C, et al. IFN-gamma Primes Keratinocytes for
HSV-1-Induced Inflammasome Activation. J Invest Dermatol. 2016;136(3):610-20.
30. Banno T, Adachi M, Mukkamala L, Blumenberg
M. Unique keratinocyte-specific effects of interferon-gamma that protect skin
from viruses, identified using transcriptional profiling. Antivir Ther.
2003;8(6):541-54.
31. Lauffer F, Jargosch M, Krause L,
Garzorz-Stark N, Franz R, Roenneberg S, et al. Type I Immune Response Induces
Keratinocyte Necroptosis and Is Associated with Interface Dermatitis. J Invest
Dermatol. 2018;138(8):1785-94.
32. Rebane A, Zimmermann M, Aab A, Baurecht
H, Koreck A, Karelson M, et al. Mechanisms of IFN-γ-induced apoptosis of
human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin
Immunol. 2012;129(5):1297-306.
33. Al-Mohaya MA, Al-Otaibi L, Al-Harthi
F, Al Bakr E, Arfin M, Al-Asmari A. Association of genetic polymorphisms in
interferon-γ, interleukin-6 and transforming growth factor-β1 gene
with oral lichen planus susceptibility. BMC Oral Health. 2016;16(1):76.
34. Mozaffari HR, Mardany A, Sadeghi M,
Rezaei F, Safaei M, Sharifi R, et al. A meta-analysis on association of
IFN-γ rs2430561 polymorphism and the risk of oral lichen planus. Gene
Reports. 2020;20:100745.
35. Georgescu SR, Tampa M, Mitran MI,
Mitran CI, Sarbu MI, Nicolae I, et al. Potential pathogenic mechanisms involved
in the association between lichen planus and hepatitis C virus infection. Exp
Ther Med. 2019;17(2):1045-51.
36. Wenzel J, Scheler M, Proelss J,
Bieber T, Tüting T. Type I interferon-associated cytotoxic inflammation in
lichen planus. J Cutan Pathol. 2006;33(10):672-8.
37. Yildirim B, Sengüven B, Demir C.
Prevalence of herpes simplex, Epstein Barr and human papilloma viruses in oral
lichen planus. Med Oral Patol Oral Cir Bucal. 2011;16(2):e170-4.
38. Choi YS, Kim Y, Yoon HJ, Baek KJ,
Alam J, Park HK, et al. The presence of bacteria within tissue provides
insights into the pathogenesis of oral lichen planus. Sci Rep. 2016;6:29186.
39. Lai YC, Yew YW. Lichen planus and
lichenoid drug eruption after vaccination. Cutis. 2017;100(6):E6-E20.
40. Sugerman PB, Satterwhite K, Bigby M.
Autocytotoxic T-cell clones in lichen planus. Br J Dermatol.
2000;142(3):449-56.
41. Gueiros LA, Gondak R, Jorge Júnior
J, Coletta RD, Carvalho AdA, Leão JC, et al. Increased number of Langerhans
cells in oral lichen planus and oral lichenoid lesions. Oral Surgery, Oral
Medicine, Oral Pathology and Oral Radiology. 2012;113(5):661-6.
42. Wenzel J, Peters B, Zahn S, Birth M,
Hofmann K, Küsters D, et al. Gene expression profiling of lichen planus
reflects CXCL9+-mediated inflammation and distinguishes this disease from
atopic dermatitis and psoriasis. J Invest Dermatol. 2008;128(1):67-78.
43. Kastelan M, Prpić Massari L,
Gruber F, Zamolo G, Zauhar G, Coklo M, et al. The role of perforin-mediated
apoptosis in lichen planus lesions. Arch Dermatol Res. 2004;296(5):226-30.
44. Wang H, Zhang D, Han Q, Zhao X, Zeng
X, Xu Y, et al. Role of distinct CD4(+) T helper subset in pathogenesis of oral
lichen planus. J Oral Pathol Med. 2016;45(6):385-93.
45. Luis-Montoya P, Yamamoto-Furusho JK,
Vega-Memije E, Rodríguez-Carreón A, Ruiz-Morales JA, Vargas-Alarcón G, et al.
HLA-DRB1*0101 is associated with the genetic susceptibility to develop lichen
planus in the Mexican Mestizo population. Arch Dermatol Res. 2007;299(8):405-7.
46. Zhou F. Molecular mechanisms of
IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int
Rev Immunol. 2009;28(3-4):239-60.
47. Samiee N, Taghavi Zenuz A, Mehdipour
M, Shokri J. Treatment of oral lichen planus with mucoadhesive mycophenolate
mofetil patch: A randomized clinical trial. Clin Exp Dent Res.
2020;6(5):506-11.
48. Solimani F, Pollmann R, Schmidt T,
Schmidt A, Zheng X, Savai R, et al. Therapeutic Targeting of Th17/Tc17 Cells
Leads to Clinical Improvement of Lichen Planus. Front Immunol. 2019;10:1808.
49. Irla N, Schneiter T, Haneke E,
Yawalkar N. Nail Lichen Planus: Successful Treatment with Etanercept. Case Rep
Dermatol. 2010;2(3):173-6.
50. Zakrzewska JM, Chan ES, Thornhill
MH. A systematic review of placebo-controlled randomized clinical trials of
treatments used in oral lichen planus. Br J Dermatol. 2005;153(2):336-41.
51. Atzmony L, Reiter O, Hodak E,
Gdalevich M, Mimouni D. Treatments for Cutaneous Lichen Planus: A Systematic
Review and Meta-Analysis. Am J Clin Dermatol. 2016;17(1):11-22.
52. Doolan BJA, H.; Christie, M.;
Dolianitis C. Cutaneous Lichen Planus Induced by Secukinumab. J Clin Exp
Dermatol Res. 2017(9:1).
53. Musumeci ML, Lacarrubba F, Micali G.
Onset of lichen planus during treatment with etanercept. Am J Clin Dermatol.
2010;11 Suppl 1:55-6.
54. Di Lernia V. Targeting the
IFN-γ/CXCL10 pathway in lichen planus. Med Hypotheses. 2016;92:60-1.
55. Alves de Medeiros AK, Speeckaert R,
Desmet E, Van Gele M, De Schepper S, Lambert J. JAK3 as an Emerging Target for
Topical Treatment of Inflammatory Skin Diseases. PLoS One.
2016;11(10):e0164080.
56. Solimani F, Meier K, Ghoreschi K.
Emerging Topical and Systemic JAK Inhibitors in Dermatology. Front Immunol.
2019;10:2847.
57. Damsky W, King BA. JAK inhibitors in
dermatology: The promise of a new drug class. J Am Acad Dermatol.
2017;76(4):736-44.
58. Patrick MT, Raja K, Miller K, Sotzen
J, Gudjonsson JE, Elder JT, et al. Drug Repurposing Prediction for
Immune-Mediated Cutaneous Diseases using a Word-Embedding-Based Machine
Learning Approach. J Invest Dermatol. 2019;139(3):683-91.
59. Damsky W, Wang A, Olamiju B,
Peterson D, Galan A, King B. Treatment of severe lichen planus with the JAK
inhibitor tofacitinib. J Allergy Clin Immunol. 2020;145(6):1708-10 e2.
60. Plante JE, C.; Snyder, A.; Elston,
D. A Stepwise Approach to the Treatment of Lichen Planopilaris. Journal of Dermatology and Skin
Science. 2020.
61. Batra P, Sukhdeo K, Shapiro J. Hair Loss
in Lichen Planopilaris and Frontal Fibrosing Alopecia: Not Always Irreversible.
Skin Appendage Disord. 2020;6(2):125-9.
62. Mullard A. FDA approves Eli Lilly's
baricitinib. Nat Rev Drug Discov. 2018;17(7):460.
63. Mok CC. The Jakinibs in systemic
lupus erythematosus: progress and prospects. Expert Opinion on Investigational
Drugs. 2019;28(1):85-92.
64. Kvist-Hansen A, Hansen PR, Skov L.
Systemic Treatment of Psoriasis with JAK Inhibitors: A Review. Dermatol Ther
(Heidelb). 2020;10(1):29-42.